What knowledge do science teachers need to teach the ecosystem concept using a river? Didactic implications to promote good practices in secondary school
Mireia Illescas-Navarro 1 2 * ,
Yolanda González-Castanedo 1 2,
María Ángeles de las Heras Pérez 1 2,
Nuria Climent Rodríguez 1 2 More Detail
1 Department of Integrated Didactics, University of Huelva, Huelva, SPAIN
2 COIDESO Research Center on Contemporary Thought and Social Development at the University of Huelva, SPAIN
* Corresponding Author
EUR J SCI MATH ED, Volume 13, Issue 1, pp. 27-40.
https://doi.org/10.30935/scimath/15873
Published: 26 January 2025
OPEN ACCESS 102 Views 64 Downloads
ABSTRACT
Teacher knowledge is vital to provide meaningful learning opportunities. In this case study, a secondary education teacher’s knowledge about how to teach the concept of ecosystems from a river is explored. A category system drawn from the literature about science teacher knowledge was used for the analysis. Science teaching requires teachers to have content and pedagogical content knowledge. The identification of these knowledge elements and their relationships has allowed to draw didactic implications so as to improve science teacher training.
CITATION
Illescas-Navarro, M., González-Castanedo, Y., de las Heras Pérez, M. Á., & Climent Rodríguez, N. (2025). What knowledge do science teachers need to teach the ecosystem concept using a river? Didactic implications to promote good practices in secondary school.
European Journal of Science and Mathematics Education, 13(1), 27-40.
https://doi.org/10.30935/scimath/15873
REFERENCES
- Alba Pastor, C. (2018). El diseño universal para el aprendizaje: Educación para todos y prácticas de enseñanza inclusivas [Universal design for learning: Education for all and inclusive teaching practices]. Ediciones Morata.
- Ayala-Villamil, L., & Fúquene, A. M. (2022). Saberes que movilizan los docentes de biología en el temprano ejercicio profesional [Knowledge that biology teachers mobilize in early professional practice]. Profesorado, 26(1), 395–414. https://doi.org/10.30827/profesorado.v26i1.15382
- Caamaño, A. (2012). ¿Cómo introducir la indagación en el aula? Los trabajos prácticos investigativos [How to introduce inquiry into the classroom? Practical research work]. Alambique. Didáctica de las Ciencias Experimentales, 70, 83–91.
- Campanario, J. M., & Otero, J. C. (2000). Más allá de las ideas previas como dificultades de aprendizaje: Las pautas de pensamiento, las concepciones epistemológicas y las estrategias metacognitivas de los alumnos de ciencias [Beyond preconceptions as learning difficulties: Thinking patterns, epistemological conceptions, and metacognitive strategies of science students]. Enseñanza de las Ciencias, 18(2), 155–169. https://doi.org/10.5565/rev/ensciencias.4036
- Cañal, P. (2004). La alfabetización científica: ¿Necesidad o utopía? [Scientific literacy: Necessity or utopia?] Cultura y Educación, 16(3), 245–258. https://doi.org/10.1174/1135640042360951
- Cañal, P., Pozuelos, F., & Travé, G. (2005). Proyecto curricular investigando nuestro mundo (6-12). Descripción general y fundamentos [Curriculum project investigating our world (6-12). Overview and rationale]. Díada Editora.
- Castro Moreno, J. A. (2005). La investigación del entorno natural: Una estrategia didáctica para la enseñanza-aprendizaje de las ciencias naturales [Researching the natural environment: A teaching strategy for teaching and learning natural sciences]. U. Pedagógica Nacional.
- Charles, R. I. (2005). Big ideas and understandings as the foundation for elementary and middle school mathematics. Journal of Mathematics Education Leadership, 7(3), 9–24.
- Chaves Mejia, G. A. (2024). La biodiversidad como un concepto estructurante urgente [Biodiversity as an urgent structuring concept]. Tecné, Episteme y Didaxis: TED, (55), 445–448.
- Couso. (2014). De la moda de “aprender indagando” a la indagación para modelizar: Una reflexión crítica [From the fashion of “learning by inquiring” to inquiry for modelling: A critical reflection]. In M. A. Heras, A. Lorca, B. Vázquez, A. Wamba, &R. Jiménez (Eds.), Investigación y transferencia para una educación en ciencias: Un reto emocionante (pp. 1–28). Servicio de Publicaciones Universidad de Huelva.
- Del Carmen, L. M. (2010). El estudio de los ecosistemas [The study of ecosystems]. Alambique. Didáctica de las Ciencias Experimentales, 66, 28–35.
- Duran, M., Usak, M., Hsieh, M., & Uygun, H. (2021). A new perspective on pedagogical content knowledge: Intellectual and emotional characteristics of science teachers. Revista de Cercetare si Interventie Sociala, 72, 9–32. https://doi.org/10.33788/rcis.72.1
- Eff-Darwich, A., Yanes Gómez, A., Goded Merino, A., González Pérez, S., Jiménez Arias, D., Rodríguez De Vera, C., Pérez Gómez, V., Díaz León, M. B., & Morales Sierra, S. (2023). “Ciencia a lo grande”: Las grandes ideas de las ciencias de la materia como recurso para la enseñanza y aprendizaje de las ciencias en educación primaria [“Big science”: The big ideas of the sciences of matter as a resource for teaching and learning science in primary education]. In M. González Montero de Espinosa, & A. Herráez Sánchez (Eds.), Experiencias y estrategias de innovación educativa en ciencia, tecnología, ingeniería y matemáticas (III) (pp. 227–232). CDL Madrid & SM.
- Fernández, J. J., & Sanjosé, V. (2007). Permanencia de ideas alternativas sobre evolución de las especies en la población culta no especializada [Persistence of alternative ideas about the evolution of species in the educated, non-specialized population]. Didáctica de las Ciencias Experimentales y Sociales, 21, 129–149.
- Galfrascoli, A. (2017). Conceptos estructurantes: Reflexiones teóricas y propuestas prácticas para organizar la enseñanza de las ciencias [Structuring concepts: Theoretical reflections and practical proposals for organizing science teaching]. Bio-grafía, 10(19). https://doi.org/10.17227/bio-grafia.vol.10.num19-7232
- García, S., & Furman, M. (2014). Categorización de preguntas formuladas antes y después de la enseñanza por indagación [Categorization of questions asked before and after inquiry teaching]. Praxis & Saber, 5(10), 75–91. https://doi.org/10.19053/22160159.3023
- Garriga, N., Pigrau, T., & Sanmartí, N. (2012). Cap a una pràctica de projectes orientats a la modelització [Towards a modeling-oriented project practice]. Ciències: Revista del Professorat de Ciències de Primària i Secundària, (21), 18–28. https://doi.org/10.5565/rev/ciencies.125
- González-Castellano, N., Berrios-Aguayo, B., Runte-Geidel, A., & Muñoz-Galiano, I. M. (2023). Buenas prácticas docentes y tutoriales en el ámbito universitario: La visión del docente [Good teaching practices and tutorials in the university environment: The teacher’s vision]. Estudios Sobre Educación, 45, 97–121. https://doi.org/10.15581/004.45.005
- Guler, M., & Celik, D. (2023). Are beliefs believable? An investigation of novice mathematics teachers’ beliefs and teaching practices. European Journal of Science and Mathematics Education, 11(3), 410–426. https://doi.org/10.30935/scimath/12905
- Hecht, M., & Crowley, K. (2019). Descifrando el marco de los ecosistemas de aprendizaje: Lecciones de la gestión adaptativa de los ecosistemas biológicos [Decoding the learning ecosystem framework: Lessons from adaptive management of biological ecosystems]. Journal of the Learning Sciences, 29(2), 264–284. https://doi.org/10.1080/10508406.2019.1693381
- Ke, L., Sadler, T. D., Zangori, L., & Friedrichsen, P. J. (2021). Developing and using multiple models to promote scientific literacy in the context of socio-scientific issues. Science & Education, 30(3), 589–607. https://doi.org/10.1007/s11191-021-00206-1
- Kutluca, A. Y., & Mercan, N. (2022). Exploring the effects of preschool teachers’ epistemological beliefs on content-based pedagogical conceptualizations and PCK integrations towards science teaching. European Journal of Science and Mathematics Education, 10(2), 170–192. https://doi.org/10.30935/scimath/11661
- Lorca-Marín, A. A. (2025). Huelva: Situaciones de aprendizaje [Huelva: Learning situations]. Octaedro.
- Luís, M. (2021). O conhecimento especializado do professor quando ensina tópicos de biologia [The teacher’s specialized knowledge when teaching biology topics] [Doctoral dissertation, Universidad de Huelva].
- Magnusson, S., Krajcik, L., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge. In J. Gess-Newsome, & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47217-1_4
- Martínez Peña, M. B., & Gil Quílez, M. J. (2014). El río: Un tema cotidiano para el aula de ciencias [The river: An everyday topic for the science classroom]. Enseñanza de las Ciencias de la Tierra, 22(3), 257–266.
- Maseko, B., & Khoza, H. C. (2021). Exploring the influence of science teaching orientations on teacher professional knowledge domains: A case of five Malawian teachers. Eurasia Journal of Mathematics Science And Technology Education, 17(12), Article em2041. https://doi.org/10.29333/ejmste/11333
- Mavhunga, E., & Ndlovu, B. P. (2023). Defining science content knowledge for teaching as a base for teacher development: A case for organic chemistry. African Journal of Research in Mathematics, Science and Technology Education, 27(2), 97–111. https://doi.org/10.1080/18117295.2023.2247711
- Morón-Monge, H., & Morón-Monge, M. C. (2017) ¿Educación patrimonial o educación ambiental?: Perspectivas que convergen para la enseñanza de las ciencias [Heritage education or environmental education?: Converging perspectives for science education]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 14(1), 244–257. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2017.v14.i1.18
- Nixon, R. S., Toerien, R. R., & Luft, J. A. (2019). Knowing more than their students: Characterizing secondary science teachers’ subject matter knowledge. School Science and Mathematics, 119(3), 150–160. https://doi.org/10.1111/ssm.12323
- Park, S., & Oliver, J. S. (2008). National board certification (NBC) as a catalyst for teachers’ learning about teaching: The effects of the NBC process on candidate teachers’ PCK development. Journal of Research in Science Teaching, 45(7), 812–834. https://doi.org/10.1002/tea.20234
- Park, S., Suh, J., & Seo, K. (2018). Development and validation of measures of secondary science teachers’ PCKfor teaching photosynthesis. Research in Science Education, 48(3), 549–573. https://doi.org/10.1007/s11165-016-9578-y
- Perona, J. J. V., Portolés, J. J. S., & Sanjosé-López, V. (2017). El conocimiento didáctico del contenido en ciencias: Estado de la cuestión [Didactic content knowledge in science: State of the art]. Cadernos de Pesquisa, 47(164), 586–611. https://doi.org/10.1590/198053143915
- Pontes, A., Serrano, R., & Poyato, F. J. (2013). Concepciones y motivaciones sobre el desarrollo profesional docente en la formación inicial del profesorado de educación secundaria [Concepts and motivations regarding teacher professional development in the initial training of secondary education teachers]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(n. extra), 533–551. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2013.v10.iextra.04
- Reynolds, W. M., & Park, S. (2021). Examining the relationship between the Educative Teacher Performance Assessment and preservice teachers’ pedagogical content knowledge. Journal of Research in Science Teaching, 58(5), 721–748. https://doi.org/10.1002/tea.21676
- Robinson, D., & Ash, P. (2014). Developing a pedagogical model for a massive open online course (MOOC). European Journal of Science and Mathematics Education, 2(2A), 131–135. https://doi.org/10.30935/scimath/9635
- Rollnick, M., & Mavhunga, E. (2016). The place of subject matter knowledge in teacher education. In J. Loughran, & M. Hamilton (Eds.), International handbook of teacher education (pp. 423–452). Springer. https://doi.org/10.1007/978-981-10-0366-0_11
- Sæleset, J., & Friedrichsen, P. (2021). Pre-service science teachers’ pedagogical content knowledge integration of students’ understanding in science and instructional strategies. Eurasia Journal of Mathematics Science and Technology Education, 17(5), Article em1965. https://doi.org/10.29333/ejmste/10859
- Schwab, J. J. (1978). Science, curriculum and liberal education. University of Chicago Press.
- Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004
- Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
- Solé, C., Couso, D., & Hernández, M. I. (2024). ¿Qué ciencia ciudadana se está haciendo en contexto escolar? Una herramienta para su evaluación [What citizen science is being done in the school context? A tool for its evaluation]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 21(2), 210301–210319. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2024.v21.i2.2103
- Strat, T. T. S., Henriksen, E. K., & Jegstad, K. M. (2023). Inquiry-based science education in science teacher education: A systematic review. Studies in Science Education, 60(2), 191–249. https://doi.org/10.1080/03057267.2023.2207148
- Treagust, D. F., & Harrison, A. G. (2000). In search of explanatory frameworks: An analysis of Richard Feynman’s lecture’ atoms in motion. International Journal of Science Education, 22(11), 1157–1170. https://doi.org/10.1080/09500690050166733
- Wamba, A. M., & Jiménez, R. (2003). ¿Es posible el cambio en los modelos didácticos personales? [Is change in personal teaching models possible?] Revista Interuniversitaria de Formación del Profesorado, 17(1), 113–131.
- Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967. https://doi.org/10.1002/sce.20259
- Yaşar, M. D., Erdoğan, M., Batdı, V., & Cinkara, Ü. (2024). Evaluation of cooperative learning in science education: A mixed-meta method study. European Journal of Science and Mathematics Education, 12(3), 411–427. https://doi.org/10.30935/scimath/14872