Design and validation of a questionnaire to explore the geometric work of mathematics teachers

Carolina Henríquez-Rivas 1 * , Andrea Vergara-Gómez 1
More Detail
1 Centro de Investigación en Educación Matemática y Estadística (CIEMAE), Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, CHILE
* Corresponding Author
EUR J SCI MATH ED, Volume 13, Issue 2, pp. 103-118. https://doi.org/10.30935/scimath/16161
Published Online: 12 March 2025, Published: 01 April 2025
OPEN ACCESS   8 Views   6 Downloads
Download Full Text (PDF)

ABSTRACT

Although research highlights the importance of analyzing the geometric work of teachers, there are few validated instruments in this line. This study presents the processes of design and validation of a forced-choice questionnaire that allows the characterization, from a theoretical basis, of how geometry teachers organize their teaching practice. From the theoretical perspective of mathematical working spaces, dimensions and subdimensions were structured. Content validation was achieved by submitting the questionnaire for expert judgment. To analyze the internal consistency, Aiken’s V coefficient and Kendall’s coefficient of concordance were used. The results permitted the general structure of the instrument to be maintained. The final version of the instrument consists of 23 items organized into 3 theoretically sustained dimensions, allowing the exploration of geometry teaching practices among mathematics teachers.

CITATION

Henríquez-Rivas, C., & Vergara-Gómez, A. (2025). Design and validation of a questionnaire to explore the geometric work of mathematics teachers. European Journal of Science and Mathematics Education, 13(2), 103-118. https://doi.org/10.30935/scimath/16161

REFERENCES

  • Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and Psychological Measurement, 45(1), 131–142. https://doi.org/10.1177/0013164485451012
  • Arteaga-Martínez, B., Macías-Sánchez, J., Pla-Castells, M., & Ramírez-García, M. (2021). Diseño y validación de un instrumento para observación de clases de matemáticas en educación secundaria: Grupo nominal y método Delphi [Design and validation of an instrument for observing mathematics classes in secondary education: Nominal group and Delphi method]. Revista Electrónica de Investigación y Evaluación Educativa, 27(2). https://doi.org/10.30827/relieve.v27i2.21812
  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72. https://doi.org/10.1007/bf02655708
  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2007). The transition to formal proof in geometry. In Theorems in school (pp. 305–323). Brill. https://doi.org/10.1163/9789087901691_018
  • Avcu, R. (2022). Pre-service middle school mathematics teachers’ personal concept definitions of special quadrilaterals. Mathematics Education Research Journal, 35(4), 743–788. https://doi.org/10.1007/s13394-022-00412-2
  • Ayvaz, Ü., Gündüz, N., & Bozkuş, F. (2017). Understanding of prospective mathematics teachers of the concept of diagonal. Journal on Mathematics Education, 8(2), 165–184. https://doi.org/10.22342/jme.8.2.4102.165-184
  • Chan, E. K. H. (2014). Standards and guidelines for validation practices: Development and evaluation of measurement instruments. In B. Zumbo, & E. Chan (Eds.), Validity and validation in social, behavioral, and health sciences. Social indicators research series (vol 54, pp. 9–24). Springer. https://doi.org/10.1007/978-3-319-07794-9_2
  • Chuaqui, M., & Riera, G. (2011). Transformaciones en geometría Euclidiana y no Euclidiana [Transformations in Euclidean and non-Euclidean geometry]. Universidad de Chile.
  • Clemente, F., & Llinares, S. (2015). Formas del discurso y razonamiento configural de estudiantes para maestros en la resolución de problemas de geometría [Forms of discourse and configural reasoning of students for teachers in solving geometry problems]. Enseñanza de las Ciencias, 33(1), 9–27. https://doi.org/10.5565/rev/ensciencias.1332
  • Costa, V. A., & Del Río, L. S. (2019). Aportes de la geometría dinámica al estudio de la noción de función a partir de un problema geométrico: Un análisis praxeológico [Contributions of dynamic geometry to the study of the notion of function from a geometric problem: A praxeological analysis]. Bolema, 33(63), 67–87. https://doi.org/10.1590/1980-4415v33n63a04
  • CPEIP. (2021). Estándares pedagógicos y disciplinarios para carreras de pedagogía en matemática [Pedagogical and disciplinary standards for mathematics teaching courses]. Center for Improvement, Experimentation and Pedagogical Research. https://estandaresdocentes.mineduc.cl/wp-content/uploads/2023/05/Matematica-Media.pdf
  • Creager, M. A. (2022). Geometric refutations of prospective secondary mathematics teachers. International Journal of Education in Mathematics, Science and Technology, 10(1), 74–99. https://doi.org/10.46328/ijemst.1594
  • Dede, Y. (2010). Mathematics education values questionnaire for Turkish preservice mathematics teachers: Design, validation, and results. International Journal of Science and Mathematics Education, 9(3), 603–626. https://doi.org/10.1007/s10763-010-9213-8
  • Díaz, V. (2022). Design and validation of a test for the types of mathematical problems associated with reading Comprehension. Education Sciences, 12(11), Article 795. https://doi.org/10.3390/educsci12110795
  • Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: Développement de la visualisation, différenciation des raisonnements et coordination de leur fonctionnements [The cognitive conditions for learning geometry: Development of visualization, differentiation of reasoning and coordination of their functioning]. Annales de Didactique et de Sciences Cognitives, 10, 5–53.
  • Escobar-Pérez, J., & Cuervo-Martínez, Á. (2008). Validez de contenido y juicio de expertos: Una aproximación a su utilización [Content validity and expert judgment: An approach to its use]. Avances en Medición, 6(1), 27–36.
  • Espinoza Salfate, L., Guerrero, G., Barbé Farré, J., & Márquez Salinas, F. (2023). Design and validation of a classroom observation instrument to evaluate the quality of mathematical activity from a gender perspective. Education Sciences, 13(3), 266. https://doi.org/10.3390/educsci13030266
  • Fernández Blanco, T., Godino, J. D., & Pegito, J. A. C. (2012). Razonamiento geométrico y visualización espacial desde el punto de vista ontosemiótico [Geometric reasoning and spatial visualization from the ontosemiotic point of view]. Bolema, 26(42a), 39–64. https://doi.org/10.1590/s0103-636x2012000100004
  • García López, M. M., Romero Albaladejo, I. M., & Gil Cuadra, F. (2021). Efectos de trabajar con GeoGebra en el aula en la relación afecto-cognición [Effects of working with GeoGebra in the classroom on the affect-cognition relationship]. Enseñanza de las Ciencias, 39(3), 177–198. https://doi.org/10.5565/rev/ensciencias.3299
  • Gómez-Chacón, I. M., Kuzniak, A., & Vivier, L. (2016). El rol del profesor desde la perspectiva de los Espacios de trabajo matemático [The role of the teacher from the perspective of mathematical workspaces]. Bolema, 30(54), 1–22. https://doi.org/10.1590/1980-4415v30n54a01
  • Guzmán Retamal, I., Pino-Fan, L. R., & Arredondo, E. H. (2020). Paradojas didácticas observadas en la gestión de los teoremas de Euclides [Didactic paradoxes observed in the management of Euclid’s theorems]. Bolema, 34(67), 651–677. https://doi.org/10.1590/1980-4415v34n67a15
  • Hankeln, C., & Greefrath, G. (2021). Mathematische modellierungskompetenz fördern durch lösungsplan oder dynamische geometrie-software? Empirische ergebnisse aus dem LIMo-projekt [Promote mathematical modeling skills through solution plans or dynamic geometry software? Empirical results from the LIMo project]. Journal für Mathematik-Didaktik, 42(2), 367–394. https://doi.org/10.1007/s13138-020-00178-9
  • Henríquez-Rivas, C. (2017). El espacio de trabajo matemático como una herramienta para el estudio de la práctica en el aula del profesor [The mathematical working space as a tool for the study of the teacher’s classroom practice]. In I. M. Gómez-Chacón et al. (Eds.), Proceedings Fifth MWS Symposium (pp. 105–116). University of Western Macedonia.
  • Henríquez-Rivas, C., & Kuzniak, A. (2021). Profundización en el trabajo geométrico de futuros profesores en entornos tecnológicos y de lápiz y papel [Deepening the geometric work of future teachers in technological environments and pencil and paper]. Bolema, 35(71), 1550–1572. https://doi.org/10.1590/1980-4415v35n71a15
  • Henríquez-Rivas, C., Kuzniak, A., & Masselin, B. (2022). The idoine or suitable MWS as an essential transitional stage between personal and reference mathematical work. In A. Kuzniak, E. Montoya-Delgadillo, & P. R. Richard (Eds.), Mathematical work in educational context. The Perspective of the Theory of Mathematical Working Spaces (pp. 121–146). Springer. https://doi.org/10.1007/978-3-030-90850-8_6
  • Henríquez-Rivas, C., Ponce, R., Carillo Yáñez, J., Climent, N., & Espinoza-Vásquez, G. (2021). Trabajo matemático de un profesor basado en tareas y ejemplos propuestos para la enseñanza [Mathematical work of a teacher based on tasks and examples proposed for teaching]. Enseñanza de las Ciencias, 39(2), 123–142. https://doi.org/10.5565/rev/ensciencias.3210
  • Herbst, P., Cheah, U. H., Richard, P. R., & Keith, J. (2018). International perspectives on the teaching and learning of geometry in secondary schools. Springer. https://doi.org/10.1007/978-3-319-77476-3
  • Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher, & J. Kilpatrick (Eds.), Mathematics and cognition (pp. 70–95). Cambridge University Press. https://doi.org/10.1017/CBO9781139013499.006
  • Jones, K., & Tzekaki, M. (2016). Research on the teaching and learning of geometry. In G. Gutiérrez, C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education: The journey continues (pp. 109–149). Sense Publishers. https://doi.org/10.1007/978-94-6300-561-6_4
  • Kirkland, P., Cheng, Y., & McNeil, N. (2024). A validity argument for a brief assessment of mature number sense. Journal for Research in Mathematics Education, 55(1), 51–67. https://doi.org/10.5951/jresematheduc-2022-0071
  • Kuzniak, A. (2006). Paradigmes et espaces de travail géométriques. Éléments d’un cadre théorique pour l’enseignement et la formation des enseignants en géométrie [Geometric paradigms and workspaces. Elements of a theoretical framework for teaching and teacher training in geometry]. Canadian Journal of Science, Mathematics and Technology Education, 6, 167–187. https://doi.org/10.1080/14926150609556694
  • Kuzniak, A. (2011). L’espace de travail mathématique et ses genèses [The mathematical workspace and its geneses]. Annales de Didactique et de Sciences Cognitives, 16, 9–24.
  • Kuzniak, A. (2018). Thinking about the teaching of geometry through the lens of the theory of geometric working spaces. In P. Herbst, U. H. Cheah, P. R. Richard, & K. Jones (Eds.), International perspectives on the teaching and learning of geometry in secondary schools (pp. 5–21). Springer. https://doi.org/10.1007/978-3-319-77476-3_2
  • Kuzniak, A. (2022). The theory of mathematical working spaces–Theoretical characteristics. In A. Kuzniak, E. Montoya-Delgadillo, & P. R. Richard (Eds.), Mathematical work in educational context: The perspective of the theory of mathematical working spaces (pp. 3–31). Springer. https://doi.org/10.1007/978-3-030-90850-8_1
  • Kuzniak, A., & Nechache, A. (2021). On forms of geometric work: A study with pre-service teachers based on the theory of mathematical working spaces. Educational Studies in Mathematics, 106(2), 271–289. https://doi.org/10.1007/s10649-020-10011-2
  • Kuzniak, A., & Richard, P. (2014). Espacios de trabajo matemático. Puntos de vista y perspectivas [Mathematical workspaces. Points of view and perspectives]. Revista Latinoamericana de Investigación en Matemática Educativa, 17(4), 5–15. https://doi.org/10.12802/relime.13.1741a
  • Kuzniak, A., Montoya Delgadillo, E., & Richard, P. (2022). Mathematical work in educational context: The perspective of the theory of mathematical working spaces. Springer. https://doi.org/10.1007/978-3-030-90850-8
  • Kuzniak, A., Tanguay, D., & Elia, I. (2016). Mathematical working spaces in schooling: An introduction. ZDM–Mathematics Education, 48, 721–737. https://doi.org/10.1007/s11858-016-0812-x
  • Lagrange, J. B., & Richard, P. (2022). Instrumental genesis in the theory of MWS: Insight from didactic research on digital artifacts. In A. Kuzniak, E. Montoya-Delgadillo, & P. R. Richard (Eds.), Mathematical work in educational context: The perspective of the theory of mathematical working spaces (pp. 211–228). Springer. https://doi.org/10.1007/978-3-030-90850-8_9
  • Lederman, R. P. (1993). Comparative and consistent approaches to exploratory research. The American Journal of Maternal/Child Nursing, 18(2), Article 107. https://doi.org/10.1097/00005721-199303000-00009
  • Legendre, P. (2005). Species associations: The Kendall coefficient of concordance revisited. Journal of Agricultural, Biological, and Environmental Statistics, 10(2), 226–245. https://doi.org/10.1198/108571105x46642
  • Machuca Pérez, K., & Montoya Delgadillo, E. (2022). The mathematical work of Chilean secondary teachers in the domain of probability. Canadian Journal of Science, Mathematics and Technology Education, 22, 558–575. https://doi.org/10.1007/s42330-022-00235-0
  • Magaña Medina, D. E., Hernández-Mena, V., Aguilar Morales, N., & Sánchez Escobedo, P. A. (2023). Apoyo de pares y expectativas de resultado en STEM: Desarrollo y validación de un instrumento [Peer support and outcome expectations in STEM: Development and validation of an instrument]. Revista Electrónica de Investigación Educativa, 25, 1–12. https://doi.org/10.24320/redie.2023.25.e06.4274
  • Martínez-Mora, E., & Camargo-Uribe, L. (2021). Construcción de triángulos, recurso para impulsar un ambiente de indagación [Building triangles, a resource to promote an environment of inquiry]. Revista Internacional de Investigación en Educación, 14, 1–24. https://doi.org/10.11144/javeriana.m14.ctri
  • Martin-Romera, A., & Molina Ruiz, E. (2017). Valor del conocimiento pedagógico para la docencia en educación secundaria: Diseño y validación de un cuestionario [Value of pedagogical knowledge for teaching in secondary education: Design and validation of a questionnaire]. Estudios Pedagógicos, 43(2), 195–220. https://doi.org/10.4067/s0718-07052017000200011
  • Mineduc. (2015). Bases curriculares 7º básico a 2º medio [Curricular bases 7th basic to 2nd secondary]. Ministry of Education of Chile. https://media.mineduc.cl/wp-content/uploads/sites/28/2017/07/Bases-Curriculares-7º-básico-a-2º-medio.pdf
  • Mohr-Schroeder, M., Ronau, R., Peters, S., Lee, C., & Bush, W. (2017). Predicting student achievement using measures of teachers’ knowledge for teaching geometry. Journal for Research in Mathematics Education, 48(5), 520–566. https://doi.org/10.5951/jresematheduc.48.5.0520
  • Montoya-Delgadillo, E., & Vivier, L. (2016). Mathematical working space and paradigms as an analysis tool for the teaching and learning of analysis. ZDM–Mathematics Education, 48(6), 739–754. https://doi.org/10.1007/s11858-016-0777-9
  • Nechache, A., & Gómez-Chacón, I.M. (2022). Methodological aspects in the theory of mathematical working spaces. In A. Kuzniak, E. Montoya-Delgadillo, & P. R. Richard (Eds.), Mathematical work in educational context: The perspective of the theory of mathematical working spaces (pp. 33–56). Springer. https://doi.org/10.1007/978-3-030-90850-8_2
  • Olfos Ayarza, R., Goldrine Godoy, T., Morales Candia, S., Estrella, S., Morales Ibarra, G., Pinto Wong, A., & Reyes Santander, P. (2022). Pauta para evaluar la dimensión práctica de la capacidad de enseñanza de la matemática en maestras de infantil en formación [Guidelines for assessing the practical dimension of the ability to teach mathematics in pre-school teachers]. Revista de Investigación en Didáctica de la Matemática, 16(4), 343–364. https://doi.org/10.30827/pna.v16i4.22125
  • Panqueban, D., Henríquez-Rivas, C., & Kuzniak, A. (2024). Advances and trends in research on mathematical working spaces: A systematic review. Eurasia Journal of Mathematics, Science and Technology Education, 20(6), Article em2450. https://doi.org/10.29333/ejmste/14588
  • Penfield, R. D., & Giacobbi Jr., P. R. (2004). Applying a score confidence interval to Aiken’s item content-relevance index. Measurement in Physical Education and Exercise Science, 8(4), 213–225. https://doi.org/10.1207/s15327841mpee0804_3
  • Pincheira-Hauck, N., & Vásquez-Ortiz, C. (2018). Conocimiento didáctico-matemático para la enseñanza de la matemática elemental en futuros profesores de educación básica: Diseño, construcción y validación de un instrumento de evaluación [Didactic-mathematical knowledge for teaching elementary mathematics in future teachers of basic education: Design, construction and validation of an evaluation instrument]. Estudios Pedagógicos, 44(1), 25–48. https://doi.org/10.4067/s0718-07052018000100025
  • Prior, J. M., & Torregrosa, G. G. (2020). Razonamiento configural y espacio de trabajo geométrico en la resolución de problemas de probar [Configural reasoning and geometric workspace in solving testing problems]. Bolema, 34(66), 178–198. https://doi.org/10.1590/1980-4415v34n66a09
  • Radford, L. (2017). On inferentialism. Mathematics Education Research Journal, 29(4), 493–508. https://doi.org/10.1007/s13394-017-0225-3
  • Richard, P., Venant, F., & Gagnon, M. (2019). Issues and challenges in instrumental proof. In G. Hanna, D. A. Reid, & M. de Villiers (Eds.), Proof technology in mathematics research and teaching: Mathematics education in the digital era, vol. 14 (pp. 139–172). Springer. https://doi.org/10.1007/978-3-030-28483-1_7
  • Seguí, J. F., & Alsina, Á. (2023). Evaluando el conocimiento especializado para enseñar estadística y probabilidad: Elaboración y validación del cuestionario MTSK-estocástico [Assessing specialized knowledge for teaching statistics and probability: Development and validation of the MTSK-stochastic questionnaire]. Uniciencia, 37(1), 84–105. https://doi.org/10.15359/ru.37-1.5
  • Sinclair, N., Bartolini Bussi, M., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2017). Geometry education, including the use of new technologies: A survey of recent research. In G. Kaiser (Eds.), Proceedings of the 13th International Congress on Mathematical Education (pp. 277–287). Springer. https://doi.org/10.1007/978-3-319-62597-3_18
  • Skjong, R., & Wentworth, B. (2001). Expert judgement and risk perception. In Proceedings of the International Offshore and Polar Engineering Conference (pp. 537–544).
  • Sunzuma, G., & Maharaj, A. (2020). In-service secondary teachers’ teaching approaches and views towards integrating ethnomathematics approaches into geometry teaching. Bolema, 34(66), 22–39. https://doi.org/10.1590/1980-4415v34n66a02
  • Tachie, S. A. (2020). The challenges of South African teachers in teaching Euclidean geometry. International Journal of Learning, Teaching and Educational Research, 19(8), 297–312. https://doi.org/10.26803/ijlter.19.8.16
  • Torregrosa, G., & Quesada, H. (2007). Coordinación de procesos cognitivos en geometría [Coordination of cognitive processes in geometry 9. Revista latinoamericana de Investigación en Matemática Educativa, 10(2), 275–300.
  • Vásquez Ortiz, C. A., Alsina Pastells, Á., Pincheira Hauck, N. G., Gea Serrano, M. M., & Chandia Muñoz, E. (2020). Construcción y validación de un instrumento de observación de clases de probabilidad [Construction and validation of a probability class observation instrument]. Enseñanza de las Ciencias, 38(2), 25-43. https://doi.org/10.5565/rev/ensciencias.2820
  • Verdugo-Castro, S., Sánchez-Gómez, M. C., & García-Holgado, A. (2022). Opiniones y percepciones sobre los estudios superiores STEM: Un estudio de caso exploratorio en España [Opinions and perceptions about STEM higher education: An exploratory case study in Spain]. Education in the Knowledge Society, 23. https://doi.org/10.14201/eks.27529
  • Zakaryan, D., & Sosa, L. (2021). Conocimiento del profesor de secundaria de la práctica matemática en clases de geometría [High school teacher’s knowledge of mathematical practice in geometry classes]. Educación Matemática, 33(1), 71–97. https://doi.org/10.24844/em3301.03
  • Zenteno Ruiz, F. A., Carhuachín Marcelo, A. I., & Rivera Espinoza, T. A. (2020). Uso de software educativo interactivo para la enseñanza y aprendizaje de la matemática en educación básica, Región Pasco [Use of interactive educational software for teaching and learning mathematics in basic education, Pasco Region]. Horizonte de la Ciencia, 10(19), 178–190. https://doi.org/10.26490/uncp.horizonteciencia.2020.19.596