AI in education: Pedagogical and ethical analysis of the implementation of ASSISTments in the school environment

Georgios A. Bazoukis 1, Spyros T. Halkidis 2 * , Evangelos Pepes 3, Pantelis Venardos 4
More Detail
1 Fifth High School of Veria, Veria, GREECE
2 Computational Methodologies and Operations Research Laboratory, Department of Applied Informatics, University of Macedonia, Thessaloniki GR-54636, GREECE
3 Christian Pedagogy School of Social Theology & Christian Culture A.U.Th. GR-54124, Thessaloniki, GREECE
4 Educational Consultant Directorate of Secondary Education of West Thessaloniki, Thessaloniki, GREECE
* Corresponding Author
EUR J SCI MATH ED, Volume 12, Issue 4, pp. 428-451. https://doi.org/10.30935/scimath/14902
Published Online: 01 August 2024, Published: 01 October 2024
OPEN ACCESS   1466 Views   791 Downloads
Download Full Text (PDF)

ABSTRACT

The problem behind our research that was investigated was the evaluation of an artificial intelligence in education tool, namely ASSISTments by seventy one science and technology students in a small city. The objective was to find to what extent the students assimilate this tool. The data collection and instrumentation were done by the tool itself. The data analysis methods used were pie charts based on the answers of the students to questions examining the level of acceptance of the tool by them as well as linear regression investigating the relation between the students’ grades and the level of acceptance of the tool by them. The main research results show a high level of acceptance of ASSISTments by them. Additionally, pedagogical implications of the use of ASSISTments were examined.

CITATION

Bazoukis, G. A., Halkidis, S. T., Pepes, E., & Venardos, P. (2024). AI in education: Pedagogical and ethical analysis of the implementation of ASSISTments in the school environment. European Journal of Science and Mathematics Education, 12(4), 428-451. https://doi.org/10.30935/scimath/14902

REFERENCES

  • Al Emran, M., & Shaalan, K. (2014, September). A survey of intelligent language tutoring systems. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (pp. 393-399). IEEE. https://doi.org/10.1109/ICACCI.2014.6968503
  • Alhazmi, A. K., Alhammadi, F., Zain, A. A., Kaed, E., & Ahmed, B. (2023). AI’s role and application in education: Systematic review. Intelligent Sustainable Systems: Selected Papers of WorldS4 2022, Volume 1, 1, 1-14. https://doi.org/10.1007/978-981-19-7660-5_1
  • Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4(2), 167-207. https://doi.org/10.1207/s15327809jls0402_2
  • Arroyo, I., Cooper, D. G., Burleson, W., Woolf, B. P., Muldner, K., & Christopherson, R. (2009). Emotion sensors go to school. In Artificial intelligence in education (pp. 17-24). IOS Press.
  • Best, J. (2013). IBM Watson: The inside story of how the Jeopardy-winning supercomputer was born, and what it wants to do next. https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
  • Borenstein, J., & Howard, A. (2021). Emerging challenges in AI and the need for AI ethics education. AI and Ethics 1, 61-65. https://doi.org/10.1007/s43681-020-00002-7
  • Brown, J. S., Burton, R. R., & Bell, A. G. (1975). SOPHIE: A step toward creating a reactive learning environment. International Journal of Man-Machine Studies, 7(5), 675-696. https://doi.org/10.1016/S0020-7373(75)80026-5
  • Burton, R. R., & Brown, J. S. (1976). A tutoring and student modelling paradigm for gaming environments. ACM SIGCSE Bulletin, 8(1), 236-246. https://doi.org/10.1145/952989.803477
  • Carbonell, J. R. (1970). AI in CAI: An artificial-intelligence approach to computer-assisted instruction. IEEE Transactions on Man-Machine Systems, 11(4), 190-202. https://doi.org/10.1109/TMMS.1970.299942
  • Carbonell, J. R. (1971). Artificial intelligence and large interactive man computer systems. https://apps.dtic.mil/sti/citations/AD0726441
  • Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: A narrative overview. Procedia Computer Science, 136, 16-24. https://doi.org/10.1016/j.procs.2018.08.233
  • Chaudry, M. A., & Kazim, E. (2021). Artificial intelligence in education (AIEd): A high-level academic and industry note 2021. AI and Ethics, 2, 157-165. https://doi.org/10.1007/s43681-021-00074-z
  • Chin, D. B., Dohmen, I. M., Cheng, B. H., Oppezzo, M. A., Chase, C. C., & Schwartz, D. L. (2010). Preparing students for future learning with teachable agents. Educational Technology Research and Development, 58(6), 649-669. https://doi.org/10.1007/s11423-010-9154-5
  • Clancey, W. J. (1983). GUIDON. Journal of Computer-Based Instruction, 10(1-2), 8-15.
  • Clancey, W. J., & Letsinger, R. (1982). NEOMYCIN: Reconfiguring a rule-based expert system for application to teaching. In Proceedings of the 7th International Joint Conference on Artificial intelligence (pp. 829-836).
  • Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1997). Intelligent tutoring systems. In J. Vanderdonckt, P. Palanque, & M. Winckler (Eds.), Handbook of human-computer interaction (pp. 849-874). North-Holland. https://doi.org/10.1016/B978-044481862-1.50103-5
  • Dai, Y., Chai, C. S., Lin, P. Y., Jong, M. S. Y., Guo, Y., & Qin, J. (2020). Promoting students’ well-being by developing their readiness for the artificial intelligence age. Sustainability, 12(16), Article 6597. https://doi.org/10.3390/su12166597
  • du Boulay, B. (2016). Artificial intelligence as an effective classroom assistant. IEEE Intelligent Systems, 31(6), 76-81. https://doi.org/10.1109/MIS.2016.93
  • Edwards, B. I., & Cheok, A. D. (2018). Why not robot teachers: Artificial intelligence for addressing teacher shortage. Applied Artificial Intelligence, 32(4), 345-360. https://doi.org/10.1080/08839514.2018.1464286
  • Feng, M., Heffernan, N., Collins, K., Heffernan, C., Murphy, R.F. (2023a). Implementing and evaluating ASSISTments online math homework support at large scale over two years: Findings and lessons learned. In N. Wang, G. Rebolledo-Mendez, N. Matsuda, O. C. Santos, & V. Dimitrova (Eds.), Artificial intelligence in education (pp. 28-40). Springer. https://doi.org/10.1007/978-3-031-36272-9_3
  • Feng, M., Huang, C., Collins, K. (2023b). Promising long term effects of ASSISTments online math homework support. In N. Wang, G. Rebolledo-Mendez, V. Dimitrova, N. Matsuda, & O. C. Santos (Eds.), Artificial intelligence in education (pp. 212-217). Springer. https://doi.org/10.1007/978-3-031-36336-8_32
  • Floyd, K., Hess, J. A., Miczo, L. A., Halone, K. K., Mikkelson, A. C., & Tusing, K. J. (2005). Human affection exchange: VIII. Further evidence of the benefits of expressed affection. Communication Quarterly, 53(3), 285-303. https://doi.org/10.1080/01463370500101071
  • Francesc, P., Miguel, S., Axel, R., & Paula, V. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. https://www.semanticscholar.org/paper/Artificial-intelligence-in-education-%3A-challenges/697ba06bfcabbbde6292d979b87b2642115f1099
  • Froelich, D. E., Hobusch, L., & Moeslinger, K. (2021). Research methods in teacher education: Meaningful engagement through service-learning. Frontiers in Education, 6, Article 680404. https://doi.org/10.3389/feduc.2021.680404
  • Guan, C., Mou, J., & Jiang, Z. (2020). Artificial intelligence innovation in education: A twenty-year data-driven historical analysis. International Journal of Innovation Studies, 4(4), 134-147. https://doi.org/10.1016/j.ijis.2020.09.001
  • Guo, L., Wang, D., Gu, F., Li, Y., Wang, Y., & Zhou, R. (2021). Evolution and trends in intelligent tutoring systems research: A multidisciplinary and scientometric view. Asia Pacific Education Review, 22, 441-461. https://doi.org/10.1007/s12564-021-09697-7
  • Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial Intelligence in Education, 24(4), 470-497. https://doi.org/10.1007/s40593-014-0024-x
  • Hinojo-Lucena, F. J., Aznar-Díaz, I., Cáceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1), Article 51. https://doi.org/10.3390/educsci9010051
  • Holmes, W., & Tuomi, I. (2022). State of the art and practice in AI in education. European Journal of Education, 57, 542-570. https://doi.org/10.1111/ejed.12533
  • Holmes, W., Persson, J., Chounta, I. A., Wasson, B., & Dimitrova, V. (2022). Artificial intelligence and education: A critical view through the lens of human rights, democracy and the rule of law. Council of Europe Publishing. https://doi.org/10.1007/978-3-031-36336-8_12
  • Horáková, T., Houška, M., & Dömeová, L. (2017). Classification of the educational texts styles with the methods of artificial intelligence. Journal of Baltic Science Education, 16(3), Article 324. https://doi.org/10.33225/jbse/17.16.324
  • Hrastinski, S., Olofsson, A.D., Arkenback, C., Ekström, S., Ericsson, E., Fransson, G., Jaldemark, J., Ryberg, T., Öberg, L.-M., Fuentes, A., Gustafsson, U., Humble, N., Sundberg, M., & Utterberg, M. (2019). Critical imaginaries and reflections on artificial intelligence and robots in postdigital K-12 education. Postdigital Science and Education, 1, 427-445. https://doi.org/10.1007/s42438-019-00046-x
  • Huxham, M., Laybourn, P., Cairncross, S., Gray, M., Brown, N., Goldfinch, J., & Earl, S. (2008). Collecting student feedback: A comparison of questionnaire and other methods. Assessment & Evaluation in Higher Education, 33(6), 675-686. https://doi.org/10.1080/02602930701773000
  • Jackson, K. M. (2019). A review of research methods trends in educational leadership journals. ICPEL Education Leadership Review, 20(1).
  • Jobin, A., Ienca, M., & Vayena, E. (2019). Artificial intelligence: The global landscape of ethics guidelines. Nature Machine Intelligence, 9(1), 389-399. https://doi.org/10.1038/s42256-019-0088-2
  • Kessler, G. (2018). Technology and the future of language teaching. Foreign Language Annals, 51(1), 205-218. https://doi.org/10.1111/flan.12318
  • Kimball, R. (1982). A self-improving tutor for symbolic integration. In Intelligent tutoring systems. Academic Press.
  • Koedinger, K. R., & Corbett, A. (2006). Cognitive tutors: Technology bringing learning sciences to the classroom. In R. K. Sawyer (Ed.), The Cambridge handbook of: The learning sciences (pp. 61-77). Cambridge University Press. https://doi.org/10.1017/CBO9780511816833.006
  • Koedinger, K. R., Brunskill, E., Baker, R. S., McLaughlin, E. A., & Stamper, J. (2013). New potentials for data-driven intelligent tutoring system development and optimization. AI Magazine, 34(3), 27-41. https://doi.org/10.1609/aimag.v34i3.2484
  • Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: A meta-analytic review. Review of Educational Research, 86(1), 42-78. https://doi.org/10.3102/0034654315581420
  • Lai, V. S. K., & Cui, X. (2014). Extending the expectation-confirmation model to evaluate the post-adoption behavior of IT continuers and discontinuers. In Proceedings of the PACIS 2014.
  • Limna, P., Jakwatanatham, S., Siripipattanakul, S., Kaewpuang, P., & Sriboonruang, P. (2022). A review of artificial intelligence (AI) in education during the digital era. Advance Knowledge for Executives, 1(1), Article 3.
  • Lin, H. C. K., Wang, C. H., Chao, C. J., & Chien, M. K. (2012). Employing textual and facial emotion recognition to design an affective tutoring system. Turkish Online Journal of Educational Technology, 11(4), 418-426.
  • Loeckx, J. (2016). Blurring boundaries in education: Context and impact of MOOCs. International Review of Research in Open and Distributed Learning, 17(3), 92-121. https://doi.org/10.19173/irrodl.v17i3.2395
  • Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson.
  • Magnisalis, I., Demetriadis, S., & Karakostas, A. (2011). Adaptive and intelligent systems for collaborative learning support: A review of the field. IEEE transactions on Learning Technologies, 4(1), 5-20. https://doi.org/10.1109/TLT.2011.2
  • MathGPT. (2023). MathGPT. https://www.mathgpt.com
  • McLaren, B. M., DeLeeuw, K. E., & Mayer, R. E. (2011). Polite web-based intelligent tutors: Can they improve learning in classrooms? Computers & Education, 56(3), 574-584. https://doi.org/10.1016/j.compedu.2010.09.019
  • Mousavinasab, E., Zarifsanaiey, N., R. Niakan Kalhori, S., Rakhshan, M., Keikha, L., & Ghazi Saeedi, M. (2021). Intelligent tutoring systems: A systematic review of characteristics, applications, and evaluation methods. Interactive Learning Environments, 29(1), 142-163. https://doi.org/10.1080/10494820.2018.1558257
  • Nabiyev, V., Çakıroğlu, Ü., Karal, H., Erümit, A. K., & Çebi, A. (2016). Application of graph theory in an intelligent tutoring system for solving mathematical word problems. Eurasia Journal of Mathematics, Science and Technology Education, 12(4), 687-701. https://doi.org/10.12973/eurasia.2015.1401a
  • Ngai, G., Chan, S. C., Cheung, J. C., & Lau, W. W. (2009). Deploying a wearable computing platform for computing education. IEEE Transactions on Learning Technologies, 3(1), 45-55. https://doi.org/10.1109/TLT.2009.49
  • Nwana, H. S. (1990). Intelligent tutoring systems: An overview. Artificial Intelligence Review, 4(4), 251-277. https://doi.org/10.1007/BF00168958
  • O’Shea, T. (1982). A self improving quadratic tutor. International Journal of Man-Machine Studies, 11, 97-124. https://doi.org/10.1016/S0020-7373(79)80007-3
  • Oxford University Press. (2023). AI in education: Where we are and what happens next. https://corp.oup.com/ai-in-education-where-we-are-and-what-happens-next/
  • Parycek, P., Schmid, V., & Novak, AS. (2023). Artificial intelligence (AI) and automation in administrative procedures: Potentials, limitations, and framework conditions. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-023-01433-3
  • Prasetya, F. H., Harnadi, B., Widiantoro, A. D., & Pamudji, A. K. (2022). Expectation-confirmation model (ECM) to see satisfaction and continued intention of e-learning (“cyber”). In Proceedings of the 6th International Conference on Information Technology (pp. 303-308). https://doi.org/10.1109/InCIT56086.2022.10067619
  • Reiss, M. J. (2021). The use of AI in education: Practicalities and ethical considerations. London Review of Education, 19(1). https://doi.org/10.14324/LRE.19.1.05
  • Schiff D. (2022). Education for AI, not AI for education: The role of education and ethics in national AI policy strategies. International Journal of Artificial Intelligence in Education, 32(3), 527-563. https://doi.org/10.1007/s40593-021-00270-2
  • Self, J. A. (1974). Student models in computer-aided instruction. International Journal of Man-Machine Studies, 6(2), 261-276. https://doi.org/10.1016/S0020-7373(74)80005-2
  • Seni, D. A. (2012). Do the modern neurosciences call for a new model of organizational cognition? Science & Education, 21(10), 1485-1506. https://doi.org/10.1007/s11191-011-9385-9
  • Sharkey, A. J. C. (2016). Should we welcome robot teachers? Ethics and Information Technology, 18, 283-297. https://doi.org/10.1007/s10676-016-9387-z
  • Shortliffe, E. (2012). Computer-based medical consultations: MYCIN. Elsevier.
  • Shute, V. J., & Psotka, J. (1994). Intelligent tutoring systems: Past, present, and future. Air Force Materiel Command
  • Brooks Air Force Base, Texas. https://doi.org/10.21236/ADA280011
  • Sun, F., & Ye, R. (2023). Moral considerations of artificial intelligence. Science & Education, 32, 1-17. https://doi.org/10.1007/s11191-021-00282-3
  • Tahiru, F. (2021). AI in education: A systematic literature review. Journal of Cases on Information Technology, 23(1), 1-20. https://doi.org/10.4018/JCIT.2021010101
  • UNESCO. (2023a). Artificial intelligence in education. https://www.unesco.org/en/digital-education/artificial-intelligence
  • UNESCO. (2023b). AI competency frameworks for school students and teachers. https://www.unesco.org/en/digital-education/ai-future-learning/competency-frameworks
  • UNESCO. (2023c). Guidance for generative AI in education and research. https://www.unesco.org/en/articles/guidance-generative-ai-education-and-research
  • UNESCO. (2023d). How can artificial intelligence enhance education? https://www.unesco.org/en/articles/how-can-artificial-intelligence-enhance-education
  • UNESCO. (2023e). The challenges and opportunities of artificial intelligence in education. https://www.unesco.org/en/articles/challenges-and-opportunities-artificial-intelligence-education
  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197-221. https://doi.org/10.1080/00461520.2011.611369
  • VanLehn, K., Jordan, P. W., Rosé, C. P., Bhembe, D., Böttner, M., Gaydos, A., & Srivastava, R. (2002, June). The architecture of Why2-Atlas: A coach for qualitative physics essay writing. In Proceedings of the International Conference on Intelligent Tutoring Systems (pp. 158-167). Springer. https://doi.org/10.1007/3-540-47987-2_20
  • VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L. & Wintersgill, M. (2005). The Andes physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education, 15(3), 147-204.
  • Vattam, S. S., Goel, A. K., Rugaber, S., Hmelo-Silver, C. E., Jordan, R., Gray, S., & Sinha, S. (2011). Understanding complex natural systems by articulating structure-behavior-function models. Journal of Educational Technology & Society, 14(1), 66-81.
  • Walker, E., Rummel, N., & Koedinger, K. (2009). Beyond explicit feedback: New directions in adaptive collaborative learning support. In Proceedings of the CSCL2009 (pp. 552-556). https://doi.org/10.3115/1600053.1600133
  • Williamson, B., Pykett, J., & Nemorin, S. (2018). Biosocial spaces and neurocomputational governance: Brain-based and brain-targeted technologies in education. Discourse: Studies in the Cultural Politics of Education, 39(2), 258-275. https://doi.org/10.1080/01596306.2018.1394421
  • Xu, W., & Ouyang, F. (2022). A systematic review of AI role in the educational system based on a proposed conceptual framework. Education and Information Technologies, 27, 4195-4223. https://doi.org/10.1007/s10639-021-10774-y
  • Yazdani, M. (1983). Introduction: Artificial intelligence and education. In M. Yazdani (Ed.), New horizons in educational computing. Wiley.
  • Yim, I. H. Y., & Su, J. (2024). Artificial intelligence (AI) learning tools in K-12 education: A scoping review. Journal of Computers in Education. https://doi.org/10.1007/s40692-023-00304-9
  • Yuki. (2022). Yuki: First humanoid lecturer. http://roboticsviz.com/meet-yuki-the-first-human-robot-lecturer
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
  • Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., & Li, Y. (2021). A review of artificial intelligence (AI) in education from 2010 to 2020. Complexity, 2021. https://doi.org/10.1155/2021/8812542
  • Zhai, X., Fang, Q., Dong, Y., Wei, Z., Yuan, J., Cacciolatti, L., & Yang, Y. (2018). The effects of biofeedback-based stimulated recall on self-regulated online learning: A gender and cognitive taxonomy perspective. Journal of Computer Assisted Learning, 34(6), 775-786. https://doi.org/10.1111/jcal.12284