THE TEACHERS' SOLUTIONS TO P #1 TO P #7.

Problem (P #)	Levi	Mia
P #1 : A farmer had 19 animals on his	Solution 1: Algebraic	Solution A:
farm - some chickens and some cows.	Let cows = A, chickens = B	19 x 4 = 76 legs if they were all cows
He also knew that there was a total of	We find two equations in the problem:	76 -62 = 14 legs too many so subtract the
62 legs on the animals on the farm.	A + B = 19	62 - 14 = 48
How many of each kind of animal did	And	48 ÷ 4 = 12 cows
	4A + 2B = 62.	7 chickens = 14 legs
(Tripathi, 2008)	We rearrange the first to give B = 19-A, and then	-
	We substitute this new equation into the second	Solution B: Guess and check
	equation for 'B', to get:	If there are 10 chickens x 2 legs that leave
	4A + 2(19 – A) = 62. Expanding and solving, we get:	20 + 36 = 56 legs
	4A + 38 – 2A = 62	Too low, so if there are 9 chickens and 10
	2A + 38 = 62	18 + 40 = 58
	2A = 24	Too low, so if there were 8 chickens and
	A = 12.	Too low, so if there were 7 chickens and
	The farmer has 12 cows and 7 chickens.	

Solution C:

Make a graph with "legs" up the y-axis and "chickens" along the x-axis. We know that there are 19 animals. The number of chickens must be between 0 (where they're all cows and there is 76 legs) and 19 (all chickens, so 38 legs), so we plot those two points, as shown. We join the two points with a line, 2a + 4b = 62 therefore if we divide both sides by 2 to simplify the equation, and then we go down the y-axis to find the number of chickens for when "legs" = 62. We go across to find out how many chickens that is (read it off the x-axis – it's 7). The farmer has 7 chickens, and so must also have 12 cows.

Solution 2: Graphic (approximated with Desmos, but the method would be a "by-hand" method)

Let chickens be a and cows be b

a + b = 19

we get a + 2b = 31

- 19

Then b = 12 so a = 7

		-
So	ution	D:

Chicke	Chicken	Cows	Cow
ns	legs		legs
0	0	19	76
1	2	18	72
2	4	17	68
3	6	16	64
4	8	15	60
5	10	14	56
6	12	13	52
7	14	12	48

em from the original number of legs

es 9 cows with 4 legs, which means cows there would be $9 \times 2 + 10 \times 4 =$ $11 \operatorname{cows} 8 \times 2 + 11 \times 4 = 16 + 44 = 60$ 12 cows 7 x 2 + 12 x 4 = 14 + 48 = 62

If we subtract the first equation from the second and solve; a + 2b - a - b = 31

Total
legs
76
74
72
70
68
66
64
62

Problem (P #) Levi Mia

P #2: Die A and Die B are twelve sides each. Suppose that you roll die A and die B at the same time. When do the dice satisfy the following two conditions?

(a) The sum of 2 times A plus B equals 15.(b) 3 times A minus B equals 5.(See Ito-Hino, 1995)

Solution A: List the possible outcomes

Let's think about condition (a), and what A can be. For example, A could roll 1, so 2 times A is 2, but then B would need to be 13 to add up to 15. The dice don't have the number 13, so this won't work. A cannot be 1.

Α	2A	В
2	4	11
3	6	9
4	8	7
5	10	5
6	12	3
7	14	1

Now, by inspection, do any of these arrangements meet the second condition? I'll try each of the A values to see if any of them work. I'll use a table to help me out.

Α	3A-5	В
2	1	11
3	4	9
4	7	7
5	10	5
6	13	3
7	16	1

I see that when A = 4, B = 7, we have a solution.

Solution B:
Condition 1: 2A + B = 15
Condition 2: 3A – 5 = B
By substituting Condition 2 into Condition 1, we get
2A + 3A – 5 = 15, and so 5A – 5 = 15.
5A = 20, and so $A = 4$ is the correct solution.

Solution A

(a)	2a + b = 15
(b)	3a – b = 5

A	В	Does this work with second equation?
2	11	No
3	9	no
4	7	yes
5	5	No

Solution **B**

Solution C	Solution D
Solve for b	Guess and check
2a + b = 15	Similar to the tab
b = 15 – 2a	
Substitute in to second equation	
3a – b = 5	
3a – (15-2a) = 5	
5a -15 = 5	
5a = 20	
a = 4	
Substitute a back into equation to find b	
3 x 4 – b = 5	
12 – b = 5	
12 – 5 = b	
7 = b	

l

the table but more random.

Problem (P #)	Levi	Mia		
P #3: You have some teen and young adult books.	Solution one: A visual method that starts from the end.	Solution A	Working backwards	
You gave one-half of the books plus one to a friend, one-half of the remaining books plus one	I draw my book with a black " X ". Then I draw enough books that went to the fri in a different colour, " <mark>X</mark> ".	Ending wi 1 Plus 1 =	th 1 ½ of the books	
books plus one to another friend. If you have one book left for you, how many books did you have	"I give half the remaining books plus one more to a friend, and at the finish I h one".	4 books 4 books p	us 1 = ½ of the books	
at the start? (Adapted from Musser et al., 2008)	I draw my book with a black X. I add the "plus one more" book with a red X. Th add in that many X's again. That is, a black X plus one red X is 2, so I add two m red X's	ore 10 books 22 books	plus 1 = $\frac{1}{2}$ of the books	
	XX XX	Check wo	rking forwards	
	Ok, let's extend that method. Clearly before that step I had four, so let's add f black X's and one red X. That'll make five, so I'll add in five more black X's. T makes ten in total.	Half of 22 our hat Half of 10 Half of 4 i	is 11, plus 1 makes 12, lea is 5, plus 1 makes 6, leavi s 2, plus 1 makes 3, leavin	aving me with 10 ng me with 4 g me with 1
	XXXXX XXXXX	Colution		Colution C
	Finally, we're up to the first step. Clearly this had left me with ten books. I draw ten, I add one more which makes 11, so I add on 11 red X's.	$my b \div 2 - 1 = b \div 2 = 2$	s 1	Act it out with b
	XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX	b : 2 - 2 b = 4		
	I see that I must have started with 22 books. I then gave away 11 + 1 (leaving m with 10). Then I gave away 5 + 1 (leaving me with 4). Then I gave away 2 + 1, leaving me with one remaining book. 22 is the correct answer.	e Using this 4 = x/2 - 1 5 = x/2	formula: b = x/2 – 1	
	Solution Two: Algebra.	10 = x, use 10 = x/2 -	e this for my new number 1	of books (b)
	If I have "A" books now, I had "B" books before. A is half of B, minus one more, $A = \frac{B}{2} - 1$	50 11 = x/2 X = 22		
	To figure out B, I can add the one back on, and then double it, so if I know A I ca get B by	n Solution I	Guess and Check	
		Books	Half + 1	Leftover
	2(A+1) = B	40	21	19
		19	Not whole number	
	$\begin{array}{c} A \\ 1 \\ 2^{*}(1+1) = A \end{array}$	30	16	14
	$\begin{array}{c c} 1 & 2 & (1 + 1) = 4 \\ 4 & 2^*(4 + 1) = 10 \end{array}$	14	8	0 2 too high
	$10 2^*(10+1) = 22$	20	11	9
		9	Not whole number	
	This shows that I had 22 books before the first step.	24	13	11
		11	Not whole number	
		22	12	10
		10	6	4
			2	1

with books.

Problem (P #)	Levi	Mia							
P #4 : Solve the equations below for <i>x</i> : (a) $4 \times (x + 3) = 16x$ (b) $2 \cdot \left(\frac{3(2n-1)}{7} + 6\right) + 7 = 25$	Р #4а	P #4a							
	Solution A: Opposite Functions:	Solution A							
	4(x+3) = 16x	1. $4(x + 3) = 16x$							
	x + 3 = 4x	Divide both sides by 4							
(Star & Seifert, 2006)	3 = 3x	x + 3 = 4x		Solution					
	Therefore x = 1.	3 = 3r	Solution B 4 (x	(+3) = 16x	Think 4				
		divide both sides by 3	Expand brackets	4x + 12 = 16x	4 so the				
	Also	x = 1	Subtract 4x from	n both sides $12 = 12 x$	Therefo				
	4(x+3) = 16x	substitute back in to equation to check $4 (1 + 2) = 16$	Divide both side	es by 12 $1 = x$	Substitu				
	4x + 12 = 16x	$4^{-1}(1+3) = 16^{-1}$			ousourca				
	12 = 12x								
	Therefore x = 1	Solution D							
		Draw images of x's and apples	P #4b Equation 2 $\left(\frac{3(2n-1)}{2}+6\right)+7=25$						
		X + • • •							
	P #4b	X + • • •		Equation 2 $\begin{pmatrix} 7 \\ 7 \end{pmatrix}$ + 0) + 7 = 25					
	$2\left(\frac{3(n-1)}{7}+6\right)+7=25$	$\begin{array}{c} X + \bullet \bullet \bullet \bullet \\ X + \bullet \bullet \bullet \bullet \end{array} = X + X + X + X + X + X + X + X + X + X$	X+X+X+X+X+X+X+X+X+X	Working from the outside/backtracking					
	(3(n-1))			Subtract 7 from both sides (
	$2\left(\frac{6(n-1)}{7}+6\right) = 18$	Cancel out four of the x's from each side	Subtract 6 from both	sides $\left(\frac{3(2n-7)}{7}\right)$					
	$\frac{3(n-1)}{2} + 6 = 9$			Multiply both sides	by 7 3(2n -				
	7 $2(n-1)$			Divide both sides by	$-3 \ 2n - 1 =$				
	$\frac{3(n-1)}{7} = 3$	= X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+	X+X+X+X+X+X	Add 1 to both sides	2n = 29				
	$\frac{(n-1)}{7} = 1$	Therefore, each X = 1 apple		Divide both sides by	n = 14.9				
	n - 1 = 7								

Therefore n = 8

n C

times what equals 16? e brackets must equal 4 pre x = 1 ute to check

whilst keeping both sides balanced $\left(\frac{n-1}{7} + 6\right) = 18$ $\left(\frac{n-1}{7}\right) = 12$ $\left(-1\right) = 84$ = 28

.5

Problem (P #)

Levi

P **#5**: Solve the equations below for *x*:

(a) 3(x+1) = 15

(b) 2(x+1) + 3(x+1) = 10

(c) 7(x-2) = 3(x-2) + 16

(d) 4(x-2) + 2x + 10 =2(3x + 1) + 4x + 8

(Star & Seifert, 2006)

P #5a

3x + 3 = 15.

3x = 12

Subtract 3 from both sides.

Start by expanding.

Therefore x = 4 (by inspection)

P #5c

Start by expanding

7x - 14 = 3x - 6 + 16

7x - 14 = 3x + 10

Add 14, subtract 3x

4x = 24

Therefore x = 6.

Another method is to collect "like terms" brackets.

P #5b

Start by expanding

2x + 2 + 3x + 3 = 10

5x + 5 = 10

5(x+1) = 10

X + 1 = 2

Therefore x = 1

Divide both sides by 5

5x = 5

Then collect like terms.

Subtract 5 from both sides

Therefore x = 1 (by inspection)

Subtracting 3(x-2) from both sides,

4(x-2) = 16

Dividing by 4,

X - 2 = 4

Therefore x = 6.

P #5d Start by expanding 4x - 8 + 2x + 10 = 6x + 2 + 4x + 8

Another method is to add together the "like terms" brackets.

6x + 2 = 10x + 10Rearrange to give

-4x = 8

X = -2

Mia

1: 3(x+1) = 15A) divide both sides by 3 x + 1 = 5subtract one from both sides x = 48) 3(x+1) = 15Expend first 3x + 3 = 15Subtract 3 from both sides 370 = 12 Divide both sides by 3 x = 4x + 1 = 5· each |(x+1)|c = 4(x+1)15 x+1)b)

3 .

A) 7(2c-2) = 3(2c-2) + 16subtract 3(x-2) from both sides 4(x-2) = 16divide both sides by 4 x-2=4add 2 to both sides .x = 6 B) 7(2c-2) = 3(2c-2) + 16

7x - 14 = 3x - 6 + 167x - 14 = 3x + 107x - 3x = 14 = 104x - 14 = 10 4 x = 24 x = 6

A : A) A(x-2) + 4 x - 8 6x B) 4(x-2)di 2 (2 - 2) 21:

2:

A) 2(x+1) +

B) 2(x+1) +

2x+2+

5x+5

5x = 5

x = 1

5 (x+1)

 $\chi + 1$

x=1

x+1 + x.

5x +"

5x = 5

 $y_{c} = 1$

0)

4 (c-2) + c) 4 (x - 2) 2(x-2 2(xC

$$3(x+1) = 10$$

$$3x + 3 = 10$$

$$= 10$$

$$3(x+1) = 10$$

$$= 10$$

$$2$$

$$1 + 2 + 1 + 2 + 1 + 2 + 1 = 10$$

$$= 10$$

$$2$$

$$1 + 2 + 1 + 2 + 1 + 2 + 1 = 10$$

$$= 10$$

$$2x + 10 = 2(3x+1) + 4x + 8$$

$$2x + 10 = 6x + 2 + 4x + 8$$

$$+ 2 = 10x + 10$$

$$8 = 4x$$

$$-2 = x$$

$$42x + 10 = a(3x+1) + 4x + 8$$

$$x + 5 = 3x + 1 + 2x + 4$$

$$x + 5 = 3x + 1 + 2x + 4$$

$$x - 2 = 2x$$

$$2x + 10 = 2(3x+1) + 4x + 8$$

$$x + 5 = 3x + 1 + 2x + 4$$

$$x - 2 = 2x$$

$$2x + 10 = 2(3x+1) + 4x + 8$$

$$x - 2 = 2x$$

$$x - 2 = 2x$$

$$2x + 10 = 2(3x+1) + 4x + 8$$

$$= 2(3x+1) + 2x - 2$$

$$x - 2 = 2x$$

$$2x + 10 = 2(3x+1) + 4x + 8$$

$$= 2(3x+1) + 2x - 2$$

$$x - 2 = 2x$$

$$2x + 10 = 2(3x+1) + 4x + 8$$

$$= 2(3x+1) + 2x - 2$$

$$x - 2 = 2x$$

$$2x + 10 = 2(3x+1) + 4x + 8$$

$$= 2(3x+1) + 2x - 2$$

$$x - 2 = 2x$$

$$2 = 2x$$

5

Problem (P #)	Levi								Mia	
<i>P</i> #6 : If you are given the sum and	Solution 1 – making a list: Suppose we knew the numbers summed to 15. Let's think about the possible solutions (sticking for now with the natural numbers)						Solution A x + y = 14 $x - y = 2$ combine 2 equations 2x = 16			
that you can always find out what the numbers are.										
(See Kieran, 1992)	No's Diff	1+14 13	2+13 11	3+12 9	4+11 7	5+10 5	6+9 3	7+8 1	therefore $y = 6$	x = 8
	We see there's no double ups. This means that if you know the sum and you know the difference then you can just list out all the numbers that add up to that amount and find the ones with the required difference. This method could also extend to problems where sum and difference are any numbers – not just counting numbers but integers and non-integers too.						Solution B $x + y = 14 re$	x + y = 14 $x - y = 2$ earrange second equa		
	Solution 2 – algebra and substitution – a general solution. Let a be larger than b. Let a + b = X (the sum)						y + 2 + y = 14 2y + 2 = 14 y = 12 y=6 x=8	substitute for x		
	Let a – b = Y (the difference) We can rearrange the second equation to get a = b + Y We can substitute that into the first to find b + b + Y = X							Solution C Guess and check/list/logic $x + y = 14 \ x - y = 2$		
	So $2b + Y = X$. It follows that if we are given any Y and any X, we can substitute them into this equation to find one of the numbers, and then find the other one. For example, if they summed to 15 with a difference of 3, then X = 15, Y = 3, and 2b + 3 = 15, so 2b = 12, and then b = 6.					X must be bigger than y 7 +7 =14 7-7=0 8 + 6 = 14 8 - 6 = 2				

ation x = y + 2

Problem (P #)	Levi	Mia		
<i>P</i> #7a : Take three consecutive numbers. Now	P #7a:	P #7a:		
calculate the square of the middle one, subtract from it the product of the other two. Now do it with another three consecutive numbers. Can you explain it with numbers? Can you use algebra to explain it?	First, a few goes with numbers.	9, 10, 11 100 - 99 = 1 3, 4, 5 16 - 15 = 1		
	 a. Let the numbers be 4, 5, 6. 5² = 25, and 4*6=24. 25 - 24 = 1. 	x^{2} - (x - 1) (x + 1) =x ² - (x ² +1x - 1x - 1)		
P #7b : A girl multiplies a number by 5 and then adds 12. She then subtracts the original number and divides the result by 4. She notices that the answer she gets is 3 more than the number she started with. She says, "I think that would happen, whatever number I started with." Using algebra, show that she is right.	 b. Let the numbers be 9, 10, 11. 10² = 100 and 9*11 = 99. 100 - 99 = 1. I suppose the difference must always be 1. 	=1 Or (x-1) (x+1) = x ² + x - x - 1 = x ² - 1 P #7b :		
<i>P</i> #7c : Show, using algebra, that the sum of two consecutive numbers is always an odd number.	Now, with algebra:	5n+12-n		
(See Kieran, 1992)	 Let the numbers be n – 1, n, and n + 1. (n-1). (n+1) = n² – 1 (this is a difference of two squares relationship). 	Solution A: $\frac{4}{4}$ $= \frac{4n+12}{4}$		
	if the square of the middle term is n^2 and the product of the outer terms is n^2 - 1 then we see why the product is always one less than the square of the middle term.	4 = n + 3		
	P #7b:	Solution B: (5n + 12 – n) ÷ 4 = (4n + 12) ÷ 4 (divide both numbers by 4)		
	$\frac{5x+12-x}{4} = \frac{4x+12}{4} = x + 3$. If her starting number is 'x', her answer will be 'x+3', proving she is right.	= n + 3		
		P #7c:		
	P #7c:	x + x + 1		
	" $2n$ " gives us the sequence of even numbers and " $2n+1$ " gives us the sequence of	e.g., 5 + 6 = 5 + 5 + 1		
	odd numbers.	This will always be double a number + 1		
	Let the lower number be 'n' and the upper number be 'n+1'. Clearly if we add them together, we get '2n+1', which by definition is an odd number.			