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 A teacher of mathematics knows mathematics as a teacher and as a mathematician. Whilst the 

existing research on teacher knowledge contributes to our understanding of the ways of 
knowing mathematics as a teacher, little is known about ways of knowing mathematics as a 
mathematician. Guided by the conceptual framework of mathematical practices (MPs) 
(commonly used by mathematicians), this case study aimed to contribute to fill this gap. The 
study examined solutions generated by two secondary teachers of mathematics to a set of 
algebraic problems to determine which MPs are apparent, or not, in the teachers’ work. Data 
were content analyzed deductively. Findings reveal that both teachers consistently 
demonstrated three practices: seeking to find patterns; creating models for mathematical ideas; 
and using symbolic representations of ideas, whilst two practices: using precise definitions of objects; 
and having fine distinctions about language were less present in either teacher solutions. More 
high-level practices such as characterizing objects based on structure and using logical arguments 
as sources of conviction were manifested in routine problems but absent in nonroutine problems. 
It is anticipated that teacher training experiences and curriculum contexts have influences on 
teachers’ MPs in doing mathematics. 

Keywords: algebraic problems, mathematical practices, mathematicians, mathematics 
teachers, secondary mathematics 

INTRODUCTION 

For a teacher, there are at least three main ways of knowing mathematics. 

(1) A teacher knows mathematics as a scholar. That is, teachers know about mainstream mathematics, 
including major results, the history of the discipline’s ideas, and the discipline’s connections to 
precollege mathematics. 

(2) A teacher knows mathematics as a teacher. Teachers use mathematics in ways that are distinct from 
teaching, including planning, task design, and interpreting student thoughts. They also understand the 
thinking that underlies different branches of mathematics, and how this thinking can be developed in 
students. 
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(3) A teacher knows mathematics as a mathematician. They often immerse themselves in mathematics that 
includes grappling with problems and carrying out experiments, building abstraction from the 
experiments, and constructing arguments that bring coherence to the abstraction (Matsuura et al., 
2013).  

Most teacher education and development programs–as also stated by Matsuura et al. (2013)–focus 
primarily on the first two ways of knowing mathematics. While the existing research on teacher mathematical 
knowledge contributes to our understanding of ways of knowing mathematics as a teacher (i.e., #2 above; 
Hatisaru & Erbaş, 2017; Hill & Chin, 2018) less is known about #3: ways of knowing mathematics as a 
mathematician. In this study, we aim to contribute to fill this gap by investigating how secondary mathematics 
teachers use the ways of doing mathematics that are usually used by mathematicians. We employ the notion 
of mathematical practices (MPs) to conceptualize the study. 

THE CONCEPT OF MATHEMATICAL PRACTICES 

There is not a common conceptualization of MPs (Moschkovich, 2013), and different terms are used in the 
research to define and describe these practices such as mathematical habits of mind (Levasseur & Cuoco, 
2003), mathematical sophistication (Seaman & Szydlik, 2007), mathematical proficiency (Kilpatrick et al., 2001), 
mathematical competencies (Niss & Højgaard, 2019), or mathematical practices (National Council of Teachers 
of Mathematics [NCTM], 2014). It is, however, consistent within the relevant literature that MPs are about how 
mathematical work is done (Cuoco et al., 2010), that they are applied “… across all content areas of 
mathematics rather than to an understanding of a specific definition, mathematical object, or procedure” 
(Seaman & Szydlik, 2007, p. 172), and that they are implicated well where individuals undertake mathematical 
tasks (Tran & Munro, 2019). 

To understand the ways that mathematics teachers use MPs in doing mathematics, we accept the learning 
and/or doing of mathematics as both a cognitive and a social process. To us, mathematics teachers 
understand and use MPs as a way of acting, thinking, and talking with mathematics, and commonly in social 
settings–for example in a classroom (Moschkovich, 2013). We believe that depending on the community of 
thought teachers are exposed to, teachers’ experiences can impact their view of mathematics and what it 
means to have mathematical experiences. Ranging from merely looking for a solution with little systematic 
approaches to investigating, connecting, testing, and seeking to understand, experiences that mold one’s level 
of mathematical sophistication. The more mathematical experiences teachers are provided, the higher the 
likelihood that they learn to experience mathematics in a more sophisticated way (Bauer & Kuennen, 2016; 
Seaman & Szydlik, 2007). 

We employ Seaman and Szydlik’s (2007) set of MPs (see Table 1). In proposing them, the authors 
conducted a comprehensive literature review into the practices of mathematicians when they create 
mathematics, particularly their habits and values. These practices were empirically measured by Szydlik et al. 
(2009). 

Prior Research on Teachers’ Use of Mathematical Practices  

Existing research on teachers’ use of MPs is comparatively sparse, but by looking across the various 
terminological conceptions of MPs (e.g., mathematical sophistication, mathematical habits of mind, 
mathematical proficiency), it is possible to get a picture of the existing research base on this topic. A few 
studies examined MPs through the lens and terminology of mathematical sophistication. In particular, 
Seaman and Szydlik (2007) examined eleven preservice elementary teachers’ mathematical sophistication in 
an attempt to explain the reason why these pre-service teachers (PSTs) were unable to make sense of 
mathematics. It was found that the participants “… did not attend carefully to language in a story problem, 
and they did not attempt to use relevant explanations” (p. 180). According to the authors, both mathematical 
knowledge for teaching and mathematical sophistication are difficult to attain, and therefore, further work is 
needed on increasing mathematical sophistication among PSTs in both mathematics content and 
mathematics education coursework. 

As other examples, Lim (2008) aimed to advance PSTs’ mathematical sophistication through some 
mathematical tasks that the author designed, but the study contained no empirical data. More empirically, 
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Bauer and Kuennen (2016) investigated to what extend the instrument constructed by Szydlik et al. (2009), 
based on the MPs in Table 1, was suitable for use with German secondary (gymnasium) PSTs, and the 
differences between novice and expert PSTs in terms of the level of mathematical sophistication they had. 
The instrument (which was designed for use with elementary PSTs) worked well with German secondary PSTs, 
perhaps because, as the authors stated, the instrument, and identified MPs characterizing it, is not bound to 
specific mathematical content. Within a subset of the study sample, expert PSTs (final years) were found to 
be more sophisticated than novice PSTs (beginning years). This finding indicates that teacher mathematical 
sophistication may look different after teachers go into the profession. That is, practicing teachers’ use of MPs 
in doing mathematical work–which is the focus of this study–may differ from those of PSTs.  

Looking to research that framed MPs as habits of mind, Matsuura et al. (2013) studied secondary teachers’ 
mathematical habits of mind within a research program whose goal was understanding the associations 
between secondary teachers’ mathematical knowledge for teaching and their students’ mathematical 
understanding. The authors reported three teachers’ habit of using mathematical language (MP5 and MP8 in 
Table 1), how this habit was manifested in the classroom, and how it might influence student learning. Their 
study showed that depending on how the teachers used it, the habit of using precise mathematical language 
could either support or inhibit student understanding.  

A study by Copur-Gencturk and Doleck (2021) is quite similar to the notion of MPs as described above. 
This study investigated teachers’ strategic competence, defined as the ability to mathematise a problem, 
devise a valid solution strategy to solve it, and arrive at a correct answer. A total of 350 fourth- and fifth- grade 
teachers were surveyed to examine their strategic competence in the context of solving four multistep 
fraction word problems. Most teachers, in this study, who generated an appropriate strategy arrived at a 
correct answer, and many of the teachers who made errors in devising a valid strategy were unable to find a 
correct answer. According to the authors, the teachers’ strategic competence was highly contingent on 
whether they devised a valid solution strategy to solve the given problems correctly. This finding indicates 

Table 1. MPs identified by Seaman and Szydlik (2007) 
MP Description 
MP1: Seek to find and understand 
patterns. 

Value and use patterns and regularity 

Have systematic ways of making sense of patterns involving number and shape 

MP2: Classify and characterize 
objects based on structure. 

Value/use operational or geometric properties over mathematically superficial 
ones such as orientation, problem context, or labelling 

MP3: Make and test conjectures 
about objects and structures. 

Explore problem situations 

Make and test conjectures by considering extreme or divergent cases 

MP4: Create mental and/or physical 
models for, and examples and non-
examples of, mathematical objects. 

Draw or imagine models (general or dynamic) to make sense of problem 
situations, relationships, and novel definitions 

MP5: Value and use precise 
definitions of objects. 

Use the mathematical definition to classify objects without regard to extraneous 
meanings of terms suggested by the wider culture 

MP6: Value an understanding of why 
relationships make sense. 

Recognize that mathematics makes sense 

Seize opportunities to explore relationships 

MP7: Value and use logical 
arguments and counterexamples as 
sources of conviction. 

Understand that examples alone do not provide sufficient mathematical 
justification for a claim 

At the same time recognize that an example can provide the seed of a general 
argument 

Value counterexamples and arguments based on structure and reasoning 

MP8: Value precise language and 
have fine distinctions about 
language. 

Understand and use the mathematical culture’s normative meanings for terms 
such as ‘and’ and ‘or’ 

Distinguish necessary from sufficient conditions 

Distinguish converse from contrapositive forms 

e.g., if a person has ten pets, it is also true that they have two pets 

MP9: Value and use symbolic 
representations of, and notation for, 
objects and ideas. 

Understand and use the mathematically normative meanings for familiar symbols 
persevere to make sense of a new symbol or a new notation that is defined for 
them 
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that teachers’ performance in solving problems may be mediated by the ways that they use, or not, MPs, 
though investigating such associations was not within the scope of the current research. 

It is worth noting that, although not widely investigated among teachers, MPs, particularly as 
conceptualized as mathematical habits of mind and strategic competence, has been investigated among 
school-aged learners (Cuocu et al., 2010). As these studies indicate, the lens of MPs has been quite informative 
for investigating students’ mathematical thinking and problem-solving, and thus there is reason to anticipate 
that this framework will be similarly useful when applied to teachers. 

THE CURRENT STUDY AND ITS SIGNIFICANCE 

This study investigates how secondary mathematics teachers use the ways of doing mathematics that 
mathematicians usually use. By using the notion of MPs, we document these practices in two secondary 
mathematics teachers’ solutions to a set of algebra problems. The research questions (RQs) we explore are, 
as follows:  

RQ1: How do the teachers solve the given problems? What strategies do they generate?  

RQ2: What mathematical practices are manifested in the teachers’ solutions?  

The study is significant for several reasons. Firstly, the mathematics education community at large 
considers mathematics disciplinary practices–including generalizing, symbolizing, structuring, representing, 
modelling, conjecturing, proving, seeking efficiency, and seeking elegance (Lim, 2013)–as fundamental aspects 
of knowing, doing, and teaching mathematics (Levasseur & Cuoco, 2003; Matsuura et al., 2013). Developing 
these practices in students is considered the essence of mathematics learning and teaching as they provide 
students with a repertoire of general strategies and methods that can be applied in a variety of situations 
(Turner et al., 2015). Consequently, MPs have increasingly become globally accepted outcomes of learning 
mathematics. They have influenced school curricula in different ways in many countries including in the 
United States (National Governors Association Center for Best Practices & Council of Chief State School 
Officers [NGA Center & CCSSO], 2010), Australia (Australian Curriculum, Assessment and Reporting Authority 
[ACARA], 2022), Norway and Sweden (Boesen et al., 2018). Mathematical knowledge and goals of mathematics 
education have been partly described based on the extent to which these practices are acquired (Turner et 
al., 2015). They have also appeared in large scale international comparison studies such as the Programme 
for International Student Assessment (PISA) (Thomson et al., 2019). Our current investigation is important 
because MPs have utility in both primary and secondary mathematics classes and beyond (Glover, 2019).  

Secondly, MPs are considered as a related facet of mathematical knowledge needed for teaching 
(Matsuura et al., 2013). As described by Ball et al. (2005): “Teachers must be able to do the mathematics they 
are teaching, but that is not sufficient knowledge for teaching … Fluency, accuracy, and precision in the use of 
mathematical terms and symbolic notation are also crucial” (p. 1058). Whilst there is abundance of research 
studies on mathematics teachers’ (for example) mathematics content knowledge or mathematics pedagogical 
content knowledge (Tchoshanov et al., 2017), little is known about teacher capability in the use of MPs. If the 
goal of mathematics teaching is to have students develop these practices, or to bring the practices of 
mathematicians into the classroom (Moschkovich, 2013), then it is necessary to have insights into the ways 
that teachers use MPs. 

Finally, the existing research studies have largely focused on mathematicians’ use of MPs (e.g., Martín-
Molina et al., 2018) or situated in postsecondary education in content domains including linear algebra, 
differential equations, or analysis (see Glover, 2019). Little is known about how MPs appear in pre-college 
classrooms (Moschkovich, 2013). In this study, we apply the MPs concept to mathematics teachers’ work, and 
this will help mathematics educators and researchers in at least two ways. First, our analysis can aid in the 
development of theoretical clarity about mathematics practices as used by teachers. And second, this study 
provides the field with grounded examples that can help to develop clarity in conversations with practitioners 
around MPs. 
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METHODS 

This is a case study wherein it was aimed to obtain an in-depth appreciation of a construct of interest (MPs) 
in its natural context (solutions given by teachers to mathematics problems) (Crowe et al., 2011). The study 
was grounded in a teacher study group, a professional learning (PL) project, implemented by the first author 
in Tasmania (Australia), wherein secondary mathematics teachers were supported to develop deeper 
understanding of algebra (Hatisaru, 2024). Teachers of mathematics who attended an annual state-based 
conference, organized by the Mathematical Association of Tasmania, were invited to this PL project. Six 
teachers expressed interest, while not all were able to attend all study group meetings. This paper focuses on 
MPs that were manifested in the mathematical work of two teachers–Levi and Mia (altered names)–who 
attended all PL meetings. Mia holds a bachelor of primary education that contained some elective units in 
year 7 to year 10 mathematics, and Levi has a bachelor of secondary education degree with a mathematics 
minor. As part of this degree, Levi undertook calculus and algebra units. At the time of the study, they were 
teaching in two different public secondary schools to year 7 to year 10 students (12–16 years old). Mia had 
three and Levi had six years of experience in mathematics teaching.  

The PL lasted one school year, between September 2021 and March 2022. During this time, seven PL 
meetings were held, approximately once a month. All meetings were held virtually. Usually one week before 
each meeting, the author sent the teachers a reflection form with a problem recorded in it. The teachers’ 
solutions to the problems guided the substance and direction of discussions at each meeting. As this was a 
voluntary PL opportunity for them, we assume that the solutions presented by the teachers belonged to them. 

Data Source: Reflection Forms  

Within the study group, multiple data collection instruments were administered, including an initial 
questionnaire which was designed to evaluate the teachers’ mathematics teaching background, reflection 
forms–the focus of this paper, and a final questionnaire designed to have the teachers’ reflections upon the 
ways in which the study group supported their PL (Hatisaru, 2024).  

The reflection forms comprise two pages. On the first page, the teachers were given a problem and 
prompted to solve the problem in as many different possible ways as they could: 

Prompt #1: Think and explain as many different possible solutions to the problem as you can. Name 
the solutions as solution A, solution B, solution C, and so on. 

It was aimed to gain insight into their capability to formulate, represent and solve mathematical problems. 
On the next page, the teachers were presented with three prompt questions that aimed to determine how 
familiar the problems were to them, the specific strategies that they would use in the teaching of the 
respective problem, and solution method(s) that they would desire from their students: 

Prompt #2: Would this problem be useful for the year levels you teach? Does it resemble problems 
you might use? 

Prompt #3: If so, identify the solution(s) (e.g., solution A, solution B, etc.) that you would use to solve 
it, and why? 

Prompt #4: Identify the solution(s) you hope your students would use. 

The teachers were emailed the reflection forms with the relevant problem recorded on it (problems #1 to 
#7, see Table 2), usually one week before each of the study group meetings (meeting #1 to meeting #7). They 
used the forms to record their solutions and brought their solutions to share with the group. 

The Problems Used 

The problems (P #) used in this study are given in Table 2, grouped according to the mathematical content 
that they cover. P #1, P #2, and P #6 are essentially simultaneous equations problems that can be solved by 
standard methods including using a graph, drawing a pictorial model, or using an algebraic approach (Tripathi, 
2008). All three problems involve translating verbal statements into symbolic equations with P #6 additionally 



 
Hatisaru et al. 

46 European Journal of Science and Mathematics Education, 13(1), 41-57 
 

incorporating variable coefficients. That is, (for example) in P #1, the number of animals on the farm and the 
total number of legs are specified (i.e., 19 and 62, respectively); however, in P #6 the sum and difference are 
not specified, and therefore they must be represented as variables to maintain the necessary generality. In P 
#1, the aim is to solve for the unknown number of cows and chickens, while for P #6 the aim is to demonstrate 
that the two unknown numbers can be uniquely specified in terms of their sum and difference (see Hatisaru 
et al., 2022). 

P #3, P #4, and P #5 are problems involving linear equations. P #3 describes an iterative process in which 
each iterative stage can be represented by a linear equation relating the number of books remaining after 
that stage to the number of books available at the beginning of the stage. Although neither teacher attempted 
to do so, it is possible to derive an expression to calculate the initial number of books using a single equation. 
If y denotes the initial number of books, and x denotes the number of books remaining after n stages, then y 
= x × 2n + 2 × (2n – 1). The current scenario has 3 stages (n = 3) in which books are distributed, and the remaining 
number of books x = 1. Hence y = 1 × 23 + 2 × (23 – 1) = 8 + 14 = 22. P #4 and P #5 are distinct from P #3 as they 
do not involve the formulation of an equation from a worded problem. Both include routine, abstract 
equations that can be solved by using the rules for manipulating algebraic symbols (e.g., expanding, collecting 
like terms, etc.).  

P #7 has three items, and while all target an algebraic solution each item has nuances. Specifically, P #7a 
instructs the person answering the question to trial specific numbers. P #7b (also P #7c) asks for algebra to 
be used to show the result; but P #7b tells the person what they should observe, while P #7a does not.  

These problems were selected such that all three types of school algebra activities would be covered: 
representational (P #1, P #2, and P #6); rule-based (P #3, P #4, and P #5); and generalizing and justifying (P 
#7). All problems encourage the use of particular MPs including seeking to find and understand patterns 
(MP1), creating models (e.g., graphs or tables) for the mathematical situation in the problem (MP4), using 
logical arguments (MP7), and valuing and using symbolic representations of ideas in the problem (MP9). 

Table 2. Problems used in this study grouped according to their content 
Content Problem (P #) 
Simultaneous 
linear equations 

P #1: A farmer had 19 animals on his farm–Some chickens and some cows. He also knew that there 
was a total of 62 legs on the animals on the farm. How many of each kind of animal did he have? 
(Tripathi, 2008). 
P #2: Die A and die B have twelve sides each. Suppose that you roll die A and die B at the same time. 
When do the dice satisfy the following two conditions:  
(a) The sum of 2 times A plus B equals 15, and  
(b) 3 times A minus B equals 5? (Ito-Hino, 1995). 
P #6: If you are given the sum and difference of any two numbers, show that you can always find out 
what the numbers are (Kieran, 1992). 

Linear equations P #3: You have some teen and young adult books. You gave one-half of the books plus one to a 
friend, one-half of the remaining books plus one to another friend, and one-half of the remaining 
books plus one to another friend. If you had one book left for you, how many books did you have at 
the start? (Musser et al., 2008). 
P #4 and P #5: Solve the equations below for x (sample items): 
P #4a: 4 × (𝑥𝑥 + 3) = 16𝑥𝑥. 
P #4b: 2 × �3(2𝑛𝑛−1)

7
+ 6� + 7 = 25. 

P #5b: 2(𝑥𝑥 + 1) + 3(𝑥𝑥 + 1) = 10 (Star & Seifert, 2006). 
Using letters to 
express the 
general 

P #7a: Take three consecutive numbers. Now calculate the square of the middle one, subtract from it 
the product of the other two. Now do it with another three consecutive numbers. Can you explain it 
with numbers? Can you use algebra to explain it? 
P #7b: A girl multiplies a number by 5 and then adds 12. She then subtracts the original number and 
divides the result by 4. She notices that the answer she gets is 3 more than the number she started 
with. She says, “I think that would happen, whatever number I started with.” Using algebra, show that 
she is right. 
P #7c: Show, using algebra, that the sum of two consecutive numbers is always an odd number 
(Kieran, 1992). 
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Data Analysis 

Data for this paper come from a total of fourteen reflection forms–one for each problem (P #1 to P #7) 
from each teacher–which primarily include mathematical text (verbal, visual, and symbolic) (Dostal & 
Robinson, 2018). These data were analyzed by Hatisaru and Richardson. We used open coding with a 
deductive mode of inquiry (Khandkar, 2009), and codes were derived from research literature.  

We analyzed each reflection form in two steps and focused on the responses to prompt #1; the responses 
from other prompts were only used to find supporting evidence for the findings derived from prompt #1. 
Extensive discussions were held in each step. First, we identified the solution strategies generated by the 
teachers to discover how they approached the given problems: verbal, numerical, tabular, graphical, and 
symbolic (see Table 3). 

Next, we conducted an in-depth analysis of these solutions. We examined each of the solutions separately 
according to the MPs presented in Table 1 and wrote memos: 

In solving the same problem, while one teacher uses verbal representation system (Mia), the other 
teacher uses a more visual/pictorial representation (X’s model). Mia, however, suggests acting the 
problem with books. So, both activate MP4 (reflection form #3, P #3, Hatisaru). 

In solution 1, Levi demonstrates a misunderstanding of the difference between discrete and 
continuous sets. The method presented would work if you were able to list the elements of the set 
you are exhaustively exploring; however, it would not work for a continuum which cannot be listed. 
That is, you cannot apply this method to non-integers. This is another lack of MP2 not 
understanding structure, and MP3 (reflection form #6, P #6, Richardson). 

We then compared the memos we wrote, and any disagreement was resolved by discussion. The data 
from Levi and Mia were analyzed separately to observe any possible similarities and/or differences in their 
responses. A practice was classified as lacking when a teacher’s solution was assessed to be deficient based 
on the absence of that practice. There were numerous instances in which the teachers did not seize an 
opportunity to demonstrate a practice; however, this did not detract from their solution and so the practice 
was not classified as lacking (i.e., opportunity to demonstrate a practice does not equate to necessity). The 
following are comprehensive elaborations of the findings. Due to space, we describe the teachers’ solutions 
but provide the actual solutions in the Supplementary Information File (SIF).  

We have incorporated several strategies to ensure the credibility of the study and its findings, informed 
by Noble and Smith (2015). For example, we have provided a transparent and clear description of the research 
process from its methods, including data generation and analysis, to the reporting of findings. Data were 
analyzed by two research team members (Hatisaru and Richardson) who have extensive expertise both in the 
relevant content areas (mathematics and mathematics education) and in qualitative data analysis. These two 
team members had extensive discussions to understand the MPs themselves (presented in Table 1) and their 
manifestation in actual contexts (in teacher solutions to the problems) to assist them to uncover taken-for-
granted assumptions. The written reflection forms allowed for repeated revisiting of the solutions to check 
MPs’ occurrences and remain true to teachers’ use of MPs in solving these problems. Finally, we have 
presented rich and thick descriptions of teachers’ solutions, as well as all actual solutions (see SIF). Based on 

Table 3. Different solution strategies to the given problems 
Strategy Description 
Verbal Using verbal reasoning to proceed from one factual statement to another in order to arrive at a solution. 
Numerical Using a systematic procedure to iteratively search for a solution. The systematic procedure must include 

guidance on how to iterate toward a solution. 
Tabular Using tabular arrays to enumerate the set of all valid solutions to equations to identify common elements 

(i.e., solution/s common to all equations). 
Symbolic Representing unknown quantities using variables; representing relationships between variables using 

equations; using algebraic approaches to solve the equations to determine the value/s of the unknown 
quantities. 

Graphical Representing unknown quantities using variables; representing relationships between variables using 
equations; plotting equations and using the plot to determine the value/s of the unknown quantities. 

 

https://www.scimath.net/suppfile/723/Supplementary-Information-File.pdf
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these strategies, we believe the reader is in a good position to make judgements about the trustworthiness 
of the study and findings.  

FINDINGS 

The RQs explored in this study were:  

RQ1: How do the teachers solve the given problems? What strategies do they generate?  

RQ2: What mathematical practices are manifested in the teachers’ solutions?  

The following subsections give the strategies both teachers generated to solve the given problems (RQ1). 
Findings regarding the MPs manifested, or not, in these solutions (RQ2) are presented in the next subsections. 

Strategies Generated by Teachers to Solve the Given Problems (RQ1) 

When presented with problems requiring a numerical answer (e.g., P #4 and P #5) Levi and Mia were able 
to determine the solution. For problems requiring proof or justification (e.g., P #6 and P #7), they were able 
to demonstrate reasonable understanding, but they were not always able to provide complete solutions. This 
might be the result of having had limited exposure to using precise mathematical definitions and generalizing 
results beyond a specific example. Table 4 summarizes the various strategies employed by Levi and Mia to 
solve the given problems. As seen in Table 4, Mia generated more varied strategies than Levi to solve the first 
five problems, whilst both used the same strategies to solve the last two problems.  

MPs in Teacher Solutions to Given Problems (RQ2)  

The MPs that were present, or lacked, in the teachers’ mathematical solutions are given in Table 5. In the 
following subsections, we give comprehensive elaborations of these MPs, organized into three groups 
according to the mathematical content that the respective problems cover. 

MPs in Solutions to Problems #1, #2, and #6 

P #1 and P #2 are relatively standard in the sense that their solutions require the determination of a 
specific numerical solution, while P #6 is more advanced in that it requires a result to be demonstrated (see 
Table 2). These three problems were considered together as they are all based on the idea of simultaneous 
equations and can be approached using simultaneous equations. 

MPs in solutions to P #1 

Levi solved P #1 algebraically by devising simultaneous equations and created a graphical solution (see 
SIF, pp. 1–2, solution 1 and solution 2). However, the conceptual connection between algebraic and graphical 

Table 4. Summary of the teachers’ solution strategies to problem #1 to problem #7 
Problem # Levi Mia 
P #1 Symbolic; graphical Symbolic; verbal; tabular 
P #2 Tabular; symbolic Tabular; graphical; symbolic 
P #3 Verbal/visual; symbolic Verbal; symbolic; tabular; physical 
P #4 Symbolic Symbolic; visual; verbal/symbolic 
P #5 Symbolic Symbolic; visual/symbolic 
P #6 Numerical; symbolic Numerical; symbolic 
P #7 Numerical; symbolic Numerical; symbolic 

 

Table 5. MPs in/visible in the teachers’ solutions to the problems 
Coverage Problem # Levi Mia 
Representational P #1 MP4; MP5; MP8; MP9 MP4; MP7; MP8; MP9; 

P #2 MP2; MP4; MP5; MP8; MP9 MP4; MP5; MP7; MP8; MP9 
P #6 MP1; MP2; MP3; MP7; MP8; MP9 MP1; MP8; MP9 

Rule-based P #3 MP1; MP4; MP7; MP9 MP1; MP4 
P #4 and P #5 MP2; MP7; MP8 MP2; MP4; MP7 

Generalizing and justifying P #7 MP1; MP7; MP8; MP9 MP1; MP2; MP5; MP7; MP9 
Note. MPs marked in bold lack in the teachers’ respective work 
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solutions was not recognized. That is, the simultaneous equations in solution 1 were formulated to solve for 
the number of cows and the number of chickens, whilst the graphical approach in solution 2 involved plotting 
the number of legs against the number of chickens. The language used to set up the algebraic approach was 
imprecise (MP5). A precise definition would be to ‘let A = the number of cows’, rather than ‘cows = A’. The 
absence of the use of precise definitions (MP5) and language (MP8) in creating mathematical text was also 
evident in the graphical solution. 

Mia used guess and check approaches to solve P #1 (solution A and solution B; SIF, p. 1). Additionally, she 
solved the problem algebraically (solution C) and using a table (solution D). Solution A was interesting as the 
approach was not particularly intuitive and was not well explained. It left us questioning whether the 
limitations of the approach were recognized, and whether its success was simply a fluke. We thought that this 
was a case of Mia performing a sequence of steps that happened to deliver the correct solution, and then 
concluding that the sequence of steps was valid as a result. This reflected a lack in MP7 in relation to making 
logical arguments and/or a lack in MP1 in relation to seeking to understand a pattern or argument. The 
algebraic approach provided in solution C was outlined poorly. The definition of variables was not precise, the 
origin of the equations was not explained, and most algebraic steps were omitted (MP8). However, the 
opportunity to simplify the solution process by dividing equation 2a + 4b = 62 by a common factor of 2 was 
noticed. 

MPs in solutions to P #2 

Levi generated a tabular solution to P #2 (solution A) and devised simultaneous equations (solution B) (see 
SIF, p. 3). He did not propose any form of graphical solution, despite having proposed a graphical approach 
to P #1. This observation suggested that not a clear connection between the similar underlying mathematical 
structure of P #1 and P #2 was drawn (MP2). 

In solution A, how the equation was manipulated to give B was not outlined. That is, where 3A–5 came 
from was not explained. These might indicate a lack in MP5 and/or MP8 in terms of the precise use of 
definitions and symbolic language when creating symbolic text. Solution B is incomplete, although it was 
possibly a minor issue. That is, the value of dice A was determined, but not the value of dice B. Also, the 
variables in either solution were not defined, whilst the meaning was clear by the context. Ideally, it could 
have been written ‘Let A denote the number rolled on dice A and B …’.  

Mia generated three solutions and proposed an additional solution to P #2 (SIF, p. 3). She found the value 
of die A and B by making a list of possibilities in a table (solution A), presented a graph (solution B), and devised 
two equations representing the conditions in the problem (solution C). Some lack of explanation or details 
were seen in these solutions, and this raised the question of whether it was recognized that the underlying 
structure of P #2 is essentially identical to P #1. The tabular solutions generated by both teachers (solution A 
in both) were effectively the same. However, the one generated by Mia was far weaker in terms of explanation 
and using a systematic or exhaustive approach. This was perhaps a lack in terms of MP7 with respect to 
conducting efficient logical arguments. 

In her reflections on P #2, Mia recognized the graphical approach to the problem (solution B), which she 
did not have on her reflections on P #1. This graph is imprecise with no additional text (e.g., defining axes) or 
statement of the solution (MP5). It was unknown whether Mia became aware of that approach upon 
discussions in meeting #1 where P #1 was the focus, or whether she viewed the problems as being different.  

In solution D, Mia proposed a guess and check approach that (in her words) “[is] similar to the table but 
more random”, which is in opposition to MP1 with respect to invisible effort to understand a pattern and MP2 
to understand a structure. To us, guess and check approaches only becomes mathematical if one uses some 
intelligence or information about the structure of the problem or equations to guide their guesses.  

MPs in solutions to P #6 

In solving P #6, both teachers recognized the potential to use simultaneous equations and proposed 
specific examples to demonstrate a solution procedure. However, the solutions were not generalized. It 
seemed neither teacher had a firm grasp of the difference between showing a general result and establishing 
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a specific example of that result, because neither of them produced a solution that could be considered to 
have fully answered the question. 

In his “solution 1–making a list”, Levi gave a specific case and then asserted without proof that it could be 
generalized (see SIF, p. 7). In there, Levi also demonstrated a misunderstanding of difference between discrete 
and continuous sets (integers versus real numbers). The method presented works if one can list the elements 
of the set they are exhaustively exploring, but it does not work for a continuum which cannot be listed. That 
is, one cannot apply this method to non-integers. This might be due to a lack of MP2 regarding not 
understanding structure, and MP3 as there was an attempt to conjecture but the conjecture was incorrect. It 
is a pity that Levi stated he would use this solution in his teaching:  

Definitely the first one [solution 1]. It’s accessible to everyone, even students who don’t have a 
strong grasp of algebra. I feel like it makes intuitive sense, too (reflection form #6, P #6, prompt #3).  

In “solution 2–algebra and substitution”, Levi started with an unnecessary assumption (SIF, p. 7). Whilst the 
algebraic solution first looked promising, it ended abruptly because the solution was reverted to a specific 
example again. It seemed that Levi did not recognize that he was just solving simultaneous equations perhaps 
because the right-hand side values “X” and “Y”, representing the sum and difference of two numbers, were 
not specific numbers. When prompted on whether this problem would be useful for the year levels they teach, 
or whether it resembles problems they might use, Levi wrote: 

It would be a very useful question as a lesson starter or warm up. It doesn’t fit neatly into too many 
of the units we teach, at least not at first glance (reflection form #6, P #6, prompt #2). 

This was further evidence for a possible lack in MB2 by the fact that Levi could not identify a fit for the 
problem within the units he teaches, when it would easily fit into a unit including simultaneous equations. 

Mia did recognize that she could use simultaneous equations, despite not formulating a general approach. 
In solution A and solution B, Mia used a specific example to demonstrate a method: i.e., simultaneous 
equations by elimination and by substitution. In solution A, the word ‘combine’ was used rather than ‘add’, 
and this might have been a lack of MP8. In solution C (the guess and check approach), Mia sought to find 
patterns or regularity, although it was less structured than solution 1 of Levi (SIF, p. 7).  

It is worth noting that, in meeting #6 where discussions were on P #6, both teachers wanted to know a 
complete algebraic solution to the problem. Also, they were curious about why the relationship in the problem 
worked. To that end, they both valued an understanding of why relationships make sense (MP6), although 
they were unable to demonstrate it in their solutions.  

MPs in Solutions to Problems #3, #4, and #5 

P #4 and P #5 required the teachers to solve linear equations in various forms. In these two problems, the 
equations are not related to a context. P #3, on the other hand, is a context-based problem, and although it 
can be formulated and solved algebraically, it can be more efficiently solved using iterative reasoning working 
backward from a final state. As all these problems include a common mathematical content (linear equations, 
see Table 2), we considered them together. 

MPs in solutions to P #3 

In his “Solution one: a visual method that starts from the end” (see SIF, p. 4), Levi created a model by using 
the symbol “X” to represent a book. In this solution, a logical argument was used (MP7) and communicated 
clearly, reflecting that the underlying pattern/structure of the problem was seen (MP1). In “Solution two: 
algebra” (SIF, p. 4), MP9 manifested itself. Here, although he did not ‘solve’ an equation as such, Levi derived 
a symbolic representation to easily facilitate the ‘working backward’ approach of “solution one”. That is, he 
did derive a recursive algebraic expression and then used that equation to work backward to a solution. In 
addition to defining the variables used, Levi rearranged the equation so that the remaining number of books 
was the independent variable, and the number of books at the previous stage was the dependent variable. 
This allows the equation to be applied efficiently at each step.  
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Overall, Mia did have a grasp on how to effectively approach P #3, too. She generated four solutions (see 
SIF, p. 4). In her first two solutions MP1 was visible in terms of using patterns and regularity. Specifically, in 
solution A, Mia implemented the idea of working backward (like Levi) through the stages of distributing books 
and then checked the result at the end. Perhaps the only difference was that Levi used symbols (i.e., X’s) to 
denote books which incorporates a visual/pictorial aspect. In solution B, like Levi, Mia derived a recursive 
algebraic expression and then used that equation to work backward to a solution. Here, Mia did not recognize 
the opportunity to rearrange her equation so that number of books remaining, x, was the independent 
variable. As a result, she had to solve for x at each stage rather than simply substituting into an equation to 
give her x (as Levi had done). Perhaps this reflected a lack of MP6 regarding seizing opportunities to explore 
relationships. However, based on the MPs observed in Mia’s work in general, we decided that this incident 
might be accidental.  

Mia’s third approach: “Solution C: act it out with books” (MB4) would ultimately be the same idea as her 
solution A but would incorporate a physical aspect that mimics the X’s in solution A of Levi. Mia “would hope 
that my [her] students would use strategy A, B, or C” in solving the problem (reflection form #3, prompt #4). 
We were surprised that solution C was considered a viable option as 22 books might not be easy to come by, 
although we guessed students could tear up a bit of paper with each piece representing a book. It appeared 
that Mia was unable to assess it as infeasible or inefficient. As opposed to the other three, Mia’s fourth 
approach: “Solution D: guess and check” was not a particularly feasible approach without some rationale to 
direct guesses. We found it not mathematical in the way that it was presented, and it looked like ‘randomly 
stabbing in the dark’.  

MPs in solutions to P #4 and P #5 

Levi’s solutions to both P #4 and P #5 (see SIF, pp. 5–6) demonstrated MP7 while they were lacking in MP2 
and MP8. We considered that MP7 was present in that performing algebraic operations requires the use of a 
logical argument. Also, as evidenced in Levi’s comments to P #4a (not P #4b), he clearly understood the 
underlying reasoning behind the operations that he performed. It was interesting that Levi did not present a 
second solution to P #4b that would have aligned to solution 2 of P #4a where he expanded the bracket and 
then solved the equation. This might be either a sign that he did not invest a significant amount of time into 
the activity, or that he did not recognize common structural aspects of the two problems. In assessing whether 
P #4a and P #4b would be useful for his students and resemble problems he might use, Levi stated that:  

This would certainly be useful. We spend a lot of time working with students on opposite functions, 
working backwards, and showing correct algebraic working out. The second one (the longer one) 
would be the sort of question I’d use to demonstrate to students that this is not harder, just longer 
(reflection form #4, P #4, prompt #2). 

The language used here such as “opposite functions” rather than ‘inverse’ is against the use of precise 
mathematical language (MP8). 

The MPs observed in Levi’s work on P #5 were consistent with the ones observed in P #4: demonstrating 
MP7 and lacking in MP8. Standard algebraic approaches in solving the given equations were included. There 
were two issues with using precise language–i.e., MP8. The first was the use of the term ‘by inspection’:  

3x = 12. 

Therefore, x = 4 (by inspection) (reflection form #5, P #5a). 

Here, the term ‘by inspection’ is used to mean ‘dividing both sides of the equation by 3’. In most instances 
Levi provided appropriate descriptions of his algebraic steps, so it was unknown why he made this choice on 
multiple occasions (P #5a, P #5b, and P #5c). The second was, when identifying the solution(s) he would desire 
from his students, Levi wrote: 

I would hope students would find that collecting “like terms” brackets is often a much quicker and 
more accurate way forward, but only where the option exists (reflection form #5, prompt #4). 
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The suggestion that one algebraic approach is “more accurate” than another, when both approaches are 
equally valid and accurate, is imprecise. 

Mia created pictures or models for P #4a (not P #4b), mirroring the use of MP7, and MP4. In doing so she 
demonstrated MP2 within P #4a but did not consistently demonstrate that practice across P #4a and P #4b. 
She only presented one solution to P #4b, which might suggest that the problem was perceived to be 
fundamentally different to P #4a. As they are structurally similar, the cover up method Mia used in P #4a 
would have been an efficient way of solving the equation in P #4b that includes multiple steps. Solution C to 
P #4a was incorrect as it did not match the equation being solved because 4 times 4 is equal to 16 not 16x. 
Mia only yielded the correct answer by accident because that answer happened to be x = 1. That said, here, 
Mia demonstrated an attempt at exploring the structure of the problem from a different perspective. It is 
unknown whether the error was related to a lack of attention to detail or a lack of competence in interpreting 
the equation.  

The same MPs were seen in solving the equations in P #5, as in P #4: MP7, MP4, and MP2. Mia 
demonstrated a greater appreciation of the structure of the problems based on the multiple approaches 
presented (see SIF, pp. 5–6). It is noteworthy that when creating mathematical text in general, and in their 
solutions to P #4 and P #5 in particular, neither teacher aligned = signs or used implication signs in presenting 
working out. We were unsure if that might be more about their inexperience with typing mathematics. Given 
that Mia presented her working out to P #5 in handwritten format, it was clearer that Mia did not adhere to 
the convention of aligning = signs or including implication signs, which we believe helps greatly in the clarity 
of presentation. 

MPs in Solutions to P #7 

In solving P #7a, both Levi and Mia used numerical examples to get a sense of what was going on before 
progressing to algebra. In solving P #7b and P #7c, they primarily used letters to express the general result 
(see SIF, p. 8). Both teachers got down to the essence of what they needed to show, although the structure of 
their solutions could be improved. For example, overall, Levi gave a complete solution to P #7a. The following 
concluding sentence could have been demonstrated algebraically: 

If the square of the middle term is n2 and the product of the outer terms is n2–1 then we see why 
the product is always one less than the square of the middle term (Levi, reflection form #7, P #7a). 

Also, in this sentence the word ‘if’ was used inappropriately to refer to the truth of a known fact (i.e., square 
of n is n2) which suggested a lack in terms of MP8. The structure of the solution to P #7b would have been 
improved if it had been started by defining x and then proceeding to the equation; that is, ‘define a variable 
before using it’. Perhaps this was a lack in MP7 relating to constructing logically sequenced arguments.  

On a relevant note, all three problems themselves are vague in the sense that they clearly mean integers 
because ‘consecutive real numbers’ is meaningless, but the problems just refer to numbers. This vagueness 
was carried over by Levi in his solution to P #7c in that 2n is only an even number if n is an integer, but Levi 
did not make that statement. Solution P #7c is correct, although lacks the use of algebra:  

Let the lower number be ‘n’ and the upper number be ‘n+1’. Clearly if we add them together, we get 
‘2n+1’, which by definition is an odd number (Levi, reflection form #7, P #7c). 

While this sentence explaining the result is correct, it could have been written n + (n + 1) = 2n + 1 which is 
odd. This was perhaps a reflection of the use symbolic language competently where relevant (MP9). 

Some similar undesired practices were observed in Mia’s solutions to P #7. In these solutions, for example, 
variables were not defined at all (MP5). Whilst Mia did better than Levi in using algebra to make her conclusion 
in P #7a, like Levi, she could have concluded the solution by writing the desired equation: n2 – (n – 1) × (n + 1) 
= 1. Mia presented two solutions (solution A and solution B) to P #7b which were structurally identical, and 
the only difference was superficial. The solution to P #7c was incomplete. Here, Mia generated a solution but 
did not nail it down, referring to the definition of an even number (MP7 and MP5). 
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SUMMARY OF FINDINGS AND DISCUSSION 

The teachers were able to solve the problems whose goal was to arrive at a numerical answer (e.g., P #4 
and P #5) and were able to demonstrate a reasonable degree of understanding of the ‘prove or justify’ type 
problems (i.e., P#6 and P#7). Their failure to produce complete solutions to P#6, and to some questions within 
P#7, was likely a consequence of their limited knowledge or experience in using precise definitions and 
generalizing results (i.e., showing a general result as opposed to providing a supporting example). In 
agreement with Copur-Gencturk and Doleck (2021), when the teachers were able to generate valid strategies 
to solve a given problem, they arrived at the correct answer.  

Table 6 summarizes the MPs that were evident, or not, in the teacher responses to the problems. Each 
tick represents an instance where the practice was demonstrated, while each cross represents an instance 
where the practice appeared lacking. Based on the findings, the MPs were divided into three groups: those 
that were consistently demonstrated; those that were demonstrated in routine problems but not in others; 
and those that were not demonstrated. 

It is worth noting that MP3 and MP6 were not classified into any of the three groups. It was not necessary 
to demonstrate MP3 to answer any of the problems, so while none of Mia’s solutions were assessed as 
demonstrating MP3, they also were not specifically lacking. The only instance in which Levi conjectured, his 
conjecture was incorrect–i.e., in P#6 he conjectured that a method based on enumeration of integer cases 
could be extended to the real number. None of the teacher solutions demonstrated (or lacked) in MP6. The 
ticks against MP6 in Table 6 were based on the teacher discussions in the study group meeting #6 in which 
both teachers sought a detailed explanation of the problem and how and why the relationship worked. 

Consistently Demonstrated MPs 

Both teachers consistently demonstrated MP1, MP4, and MP9. It is fair to say that Mia created mental or 
concrete models for ideas in the problems more often than Levi, and Levi was inclined to use algebraic 
symbolism more often than Mia.  

MP1 and MP4 are linked to seeking and establishing understanding of a problem, while MP9 is about 
representing problems mathematically. In some ways these could be considered the most fundamental of 
the MPs regarding making sense and representing mathematically, so it is reassuring that these practices 
were evident in both teachers’ solutions. The slight difference revealed in the responses of Levi and Mia might 
be influenced by their teacher training (Blömeke & Delaney, 2012). That is, Mia has a primary education 
background that included some elective mathematics units, whereas Levi has a science major with 
mathematics being the minor subject where he studied calculus and algebra. It is likely that the use of physical 
models (e.g., the use of diagrams, counters, or blocks) as tools to assist students to explore and understand 
mathematics is more prevalent in the primary school context (Ball, 2000; Seaman & Szydlik, 2007) and in the 
associated university electives. It is probable that these tools and processes are more fundamental to Mia’s 
notion of doing mathematics than the use of algebraic symbolism. Conversely, Levi’s training would likely have 
focused far less on physical models and exploration, and more on the introduction of algebraic methods for 
representing and solving problems. However, this finding is tentative and needs to be further investigated.  

Table 6. Summary of MPs evident or lacking in the teachers’ solutions to P #1 to P #7 
MPs Levi Mia 
MP1: Seek to find and understand patterns. √ √ √ √ √ √ 
MP2: Classify and characterize objects based on structure. × × × × √ √ × 
MP3: Make and test conjectures about objects and structures. ×  
MP4: Create mental and/or physical models for, and examples and non-examples of, 
mathematical objects. 

√ √ √ √ √ √ √ √ 

MP5: Value and use precise definitions of objects. × × × × 
MP6: Value an understanding of why relationships make sense. √ √ 
MP7: Value and use logical arguments and counterexamples as sources of conviction. √ √ √ × × √ √ × × × 
MP8: Value precise language and have fine distinctions about language. × × × × × × × × × 
MP9: Value and use symbolic representations of, and notation for, objects and ideas. √ √ √ √ √ √ √ √ √ 
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MPs Manifested in Routine Problems but Less Present in Nonroutine Ones 

MP2 and MP7 were evident in the teacher solutions to P #4 and P #5, which are routine problems, but 
generally not present in their solutions to nonroutine problems such as P #6 and P #7, as was also observed 
in the solutions of participating teachers in Hatisaru et al. (2022). Both MPs represent a higher level of 
sophistication, including the ability to argue logically, recognize and generalize structure, and to conjecture. 
This is unsurprising, as the use of logical arguments and recognition of structure in unfamiliar contexts is a 
more advanced skill than the application of logical arguments and recognition of structure in familiar or 
standard ones. Success in generalizing and justifying type tasks (Kilpatrick et al., 2001)–such as P #6 and P#7–
requires proficiency not only in the use of algebra/symbolic representation, but also a comfort or 
preparedness to explore unfamiliar ideas and create mental models. That is because, as described extensively 
by Kilpatrick et al. (2001), these tasks include, for example, problem-solving, modelling, justifying, proving, or 
predicting skills, and in these tasks, all aspects of mathematical proficiency come together. 

Interestingly, Levi came closer to producing complete solutions to P #6 and P #7, most likely because of 
his greater training and experience in algebraic representation and reasoning. Mia, on the other hand, 
seemed to undertake simple explorations of the problems but lacked the algebraic proficiency to represent 
and generalize her findings. This again suggests that the quality of teacher use of MPs is mediated by learning 
experiences and opportunities to learn during teacher training, and broad policy or curriculum contexts are 
also contributing factors (Blömeke & Delaney, 2012). To our knowledge, in the Australian school curriculum 
(ACARA, 2022), compared to representational and transformational activities of algebra, generalization and 
justification activities are less common in grades 7 and 8 (12–13 years old)–the years that Levi and Mia usually 
teach. Possibly neither teacher explores this type of algebra activities themselves nor commonly uses it in 
their instruction. The teachers’ use of MPs observed in their responses to the generalization and justification 
type problems in this sense might reflect what they enact less in their classes.  

Consistently Lacked MPs 

MP5 and MP8 were not evident in any of the teacher solutions. Both of these MPs relate to precision in 
language and definitions in creating and/or communicating textual, symbolic, visual, or graphical type of 
mathematical text (Dostal & Robinson, 2018). Broadly, we concur with Matsuura et al. (2013) that whether a 
teacher uses precise and clear mathematical language might depend on the classroom context. Within the 
context of this study, the lack of MP5 and MP8 perhaps may reflect a more casual or intuitive and less rigorous 
presentation of mathematics, both in university mathematics courses where teachers are trained, and 
subsequently in secondary school mathematics classrooms. Nevertheless, as Ball et al. (2005) stated, we 
believe that: “Mathematics requires careful reasoning about precisely defined objects and concepts” (p. 1055). 
To that end, we join Dostal and Robinson (2018) who highlighted the importance of fluency in mathematical 
text and language in enhancing the ability of a student (or teacher) to engage in mathematical thinking. MPs 
in general are rarely made explicit during teacher training as a facet of mathematical knowledge (Bauer & 
Kuennen, 2016). However, it is desirable that teachers of mathematics receive training in reading, interpreting, 
utilizing, and creating mathematical language, as well as in other MPs. 

CONCLUSION 

In this study, we analyzed solutions generated by two secondary mathematics teachers to a set of algebraic 
problems with the aim of determining the presence of and prevalence of several MPs used by 
mathematicians. Consistent with past research, these two teachers were largely able to compute numerical 
answers and to provide reasonable justifications in support of their answers to the algebraic problems–
although they were challenged to provide complete solutions to some of the problems. In terms of their use 
of MPs, our results indicate that there were a set of practices that were consistently used by the two teachers, 
related to finding and understanding patterns, using mental and physical models, and using symbolic 
representations. But for other practices, these two teachers either did not take advantage of opportunities to 
use the practices (e.g., using precise definitions; using precise language) or the problems did not require the 
use of the practices (e.g., making and testing conjectures). These findings contribute to our understanding of 
the ways that secondary teachers can and should know mathematics, particularly in pointing our attention to 
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how teachers can know and do mathematics as mathematicians do and inviting us to consider how teacher 
training experiences and curricula can foster the development of teachers’ use of MPs used by 
mathematicians. 

Limitations and Future Directions 

We aimed to understand the extent to which secondary mathematics teachers use the practices of doing 
mathematics and have observed how the teachers use, or not, core practices of mathematicians in their 
mathematical work. Whilst the findings are limited to the solutions generated by two teachers, they contain 
valuable insight into the use of mathematical practices (MPs) among teachers of mathematics. As such, the 
study also opens new research avenues for research on the use of MPs in the teaching and learning of 
mathematics. 

First, this study is based on teachers’ written work to a set of problems. We need to understand how 
teachers activate these practices in their teaching, for example, in their lesson planning, instructions, and task 
design, sequencing and implementation. More importantly, as also suggested by Matsuura et al. (2013), we 
need to investigate the complex connections between the use of MPs in teaching and student learning. 
Broadly, a teacher’s level of the use of these practices can inform the strategies they use to approach 
mathematical problems and consequently may impact their teaching, and the learning outcomes of their 
students (Seaman & Szydlik, 2007). Second, while analyzing the associations between the use of MPs and 
performance in problem solving was beyond the scope of this paper, it seems that the absence of specific 
MPs does not limit one in ‘arriving at a correct answer’. As Tran and Munro (2019) asked: “Does possession, 
or absence, of these [practices] influence their [one’s] ability to solve the problems?” To us, this is an emergent 
area. An important consideration going forward is the design of mathematical tasks which are specifically 
designed to elicit MPs and less about obtaining a correct answer. Such tasks may facilitate an enhanced 
assessment of teachers’ level of the use of MPs. Third, in this investigation, we have considered MPs as part 
of teacher mathematical knowledge needed for teaching; however, examining the participating teachers’ 
mathematical knowledge was beyond the scope of the investigation. We are therefore unable to make 
judgements about if and how teachers’ performance in using MPs may be mediated by their mathematical 
knowledge needed for teaching. We hope that researchers in this field will take this opportunity. 

Finally, in accord with Blömeke and Delaney (2012), our data show that teachers’ relevant performance 
could have been impacted by their learning experiences during teacher training. This finding, nevertheless, is 
tentative and needs to be explored further. Research studies including larger groups of teachers who have 
different teacher training are warranted to observe this potential impact.  
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