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Abstract : In preparing an address that fits well within the themes of the Frontiers in Mathematics and Science 
Education Research Conference 2014, I have chosen geometry. Evidently, geometric applications in Calculus, Algebra 
and other fields are essential for these disciplines’ development. In addition, the widespread use of geometry by pre-
service and in-service teachers in elementary, middle, and secondary schools and universities makes it an 
indispensable discipline for a large population in education. In what follows I will try to highlight and present the main 
trends in recent research activities in teaching and learning undergraduate geometry that were carried out throughout 
the second half of the twentieth century up to the present. In particular, research on studying children and young 
adults’ processes of how they construct geometric and spatial ideas of objects will be discussed. Additionally, research 
in mathematics on proofs and proving with selected examples of proving the Pythagorean Theorem visually and 
through geometric construction including my own proof will be introduced. 
 
Keywords: construct, spatial, geometry, mathematics, calculus, proofs. 

 

 
Introduction and background 
 
Throughout the last half of the twentieth century, there have been critical didactic events in the area 
of thoughts development in geometry. Primarily, in the late 1950s, the van Hieles Model of Levels of 
Geometric Thoughts Development was introduced by Pierre van Hiele and Dina-Geldof van Hiele 
(Pierre van Hiele, 1984a, 1984b & Dina van Hiele-Geldof, 1984a, 1984b). Initially the van Hieles model 
appeared within the writings of Dina van Hiele-Geldof (1984a) and Pierre van Hiele (1984b). The van 
Hieles model would seem to be one of the significant events in mathematics education. Consequently, 
the work and research of scholars in geometry education from the 1950s to the present have been 
energized worldwide with specific interest into the levels of students’ geometric thinking processes 
and the methods of school teaching of geometry in the classrooms. In this review, the new student-
centered work and research activities in geometry may be classified into two main categories: 
Research in Thought Development in Geometry, and Research in Methods of Teaching Geometry. 
The following is an attempt to introduce major events in each of these categories and the influences of 
the two trends on each other as the allocated space allows.  
 
Research in Thought Development in Geometry 
 
A well-known research work in this category has been the establishment of a research based model of 
Levels of Thought Development in Geometry known as the van Hieles Levels of the Development of 
Geometric Thinking introduced by Dina-Geldof van Hiele and Pierre van Hiele in the 1950s 
(Shaughnessy and Burger, 1985). The impact the van Hieles model has made on the geometry curricula 
and its teaching methods along with a number of other related research projects will be discussed. 
 

The van Hieles Levels of Thought Development in Geometry (1950s). Van Hieles research have come up with 

five levels of geometric thinking development that the student would progress through subject to the 

geometry instruction he/she receives regardless of his/her biological growth. That is, a student may 

remain at the first level of geometric thinking for the rest of his/her life if no instruction is made to 
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progress the student to the next level. In other words, student’s progress from a level to the next does 

depend on instruction and content received. No method of instruction permits the learner to skip a 

level. In contrase, Piaget’s cognitive development levels [Sensorimotor (0-2 yrs), Pre-operational (2 – 6 

yrs), Concrete-operational (6-12 yrs), Formal-operational (12 -16 yrs)] are due to biological growth and 

progress from level to the next is automatic (Piaget, Inhelder, & Szeminska, 1960).  

 

The van Hieles five levels were described in the literature as follows: Level 0: Visualization; Level 1: 

Analysis; Level 2: Informal Deduction; Level 3: Formal Deduction; and Level 4: Rigor; and outlines of 

these levels, based on Crawley (1987) and Shaughnessy & Burger (1985), are given below: 

 

Level 0: Visualization  

Students at this level are aware of their surrounding as something that exists around them. 

Geometric objects are viewed in their totality with no awareness to their components or 

attributes; that is, geometric objects or figures are identified by their shape as a whole ... by 

their physical looking and not by their parts or properties. For example, a person at this level 

can learn geometric vocabulary, can identify specified shapes like a square or a rectangle and 

can reproduce a given square or rectangle. However, a person at this level would not 

recognize that the square or rectangle has right angles or that the opposite sides are parallel. 

 

Level 1: Analysis  

In this level students begin analysing geometric concepts through observation and experimentation 

where they start to distinguish and recognized properties of figures; and the recognized properties 

are utilized to identify classes of shapes. As such, figures are identified by their parts. For example, 

for a given parallelogram, students can, by marking the equal angles, conclude that the opposite 

angles in parallelograms are equal. After experimenting of several parallelograms, students can 

make generalization for the class of parallelograms. Interrelationships among figures and among 

properties are not reached, and definitions are not realized. 

 

Level 2: Informal Deduction 

Students at this level can establish interrelationships of properties within a given figure (e.g., 

in a triangle, the three sides being equal necessitate its three angles being equal). Also, 

students at this level can establish interrelationships among figures (e.g., a square is a 

parallelogram because its opposite sides are parallel too). Therefore, students at this level can 

figure out properties of a figure and identify classes of figures; and, class inclusion as well as 

definitions, are realized. However, students at this level do not realize the important role of 

axioms, formal proofs, and the significance of deductive reasoning.      

 

Level 3: Formal Deduction 

The importance of deduction as a method to create a theory through certain axioms is 

realized at this level. The role of axioms, definitions, theorems, undefined terms, postulates, 

and proofs are understood. The students at this level can establish proofs; they realize that 

developing a proof can be done in different ways. 

 

Level 4: Rigor  

In this level students can function in a number of axiomatic systems; they can study non-

Euclidean geometries. Geometry, therefore, is approached in the abstract. (Shaughnessy and 

Burger, 1985, p. 420, and Crowley, M., 1987, pp. 2-3). 

 

Wirszup’s Report (1976): Breakthroughs in the Psychology of Learning and Teaching Geometry.  Historically, 

the van Hieles model was introduced in the late 1950s through the writings of Dina van Hiele-Geldof 

(1984a, 1984b) and Pierre van Hiele (1984a, 1984b). However, although the model was introduced in 
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the late 1950s, it was not until the 1970s the model started getting publicity around the world through 

scholars’ writings, presentations, and publications such as Freudenthal (1973) and Issak Wirszup 

(1976). In this regard, it is interesting to recall what Wirszup (1976) has once commented on the 

problematic status of undergraduate geometry in USA in which he referred extensively to the van 

Hieles levels of geometric thought development. In his words, Wirszup (1976) concluded that,  

 
A review of the teaching of geometry in the United States indicates at once that only a very small 

number of the elementary schools offer any organized studies in visual geometry, and where they are 

done, they begin with measurements and other concepts which correspond to Levels II and III of 

thought development in geometry. Since Level I is passed over, the material that is taught even in these 

schools does not promote any deeper understanding and soon completely forgotten. Then, in the 10th 

grade, 15 and 16 year old youngsters are confronted with geometry for almost the first time in their 

lives. The whole unknown and complex world of plane and space is given to them in a passive 

axiomatic or pseudo-axiomatic treatment. The majority of our high school students are at the first level 

of development while the course they take demands the fourth level of thought. It is no wonder that 

high school graduates have hardly any knowledge of geometry, and that this irreparable deficiency 

haunts them continually later on (p. 96) 
 

Piaget’s Position on Learning and Teaching Geometry. As a matter of fact, the problematic status of 

undergraduate geometry outlined above by Wirszup (1976), was recognized much earlier by Piaget 

(1962). In making an observation on the learning and teaching geometry while commenting on 

Vygotsky’s critical remarks concerning The Language and Thought of the Child, Piaget (1962) stated that,  
... it begins late, ... it is specifically geometrical or even metrical without first going through a qualitative 

phase in which spatial operations would be reduced to logical operations, applied to a continuum ... it 

should be clear that to my mind it is not the child that should be blamed for the eventual conflicts, but 

the school, unaware as it is of the use it could make of the child’s spontaneous development, which it 

should reinforce by adequate methods instead of inhibiting it as it often does (pp. 7-8).  

 

The preceding views on the state of affairs in school geometry clearly indicate its problematic nature 

where complex concepts (measurement aspects of shapes) are being used to understand simpler concepts (visual 

properties of shapes). 

 
Research in Methods of Teaching Geometry 

 

Since Wirszup's assessment (1976), school geometry has witnessed a slow improvement and little 

change. The major contributions remain the work of the van Hieles and its impact on East European 

scholars. At the mid 1970s, the East European countries, have initiated overall revisions of the school 

geometry curricula at all school levels based on the van Hieles levels of geometric thinking (Wirszup, 

1976). Furthermore, in North America, and by the mid 1970s, gradual and steady efforts for 

improvement of what and how to teach undergraduate geometry have taken place. In particular, the 

National Council of Teachers of Mathematics (NCTM) has introduced its document, Curriculum and 

Evaluation Standards for School Mathematics (1989), based on the new research findings throughout the 

world. Consequently, more scholars have adopted van Hieles model. Thus, a number of proposed 

investigative works in visual literacy were initiated and published in the form of new approaches 

documents, texts, booklets, and teaching materials.  The following is a review of a sample of some 

exemplary products in the forms of texts, research projects and position papers in learning and 

teaching geometry along the van Hieles levels. 

 
Text Books 

Geometry: An Investigative Approach, by Phares G. O'Daffer & Stanley R. Clemens (1976, 1st Edition & 1992, 

2nd Edition).  
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O'Daffer & Clemens (1992) have made it clear that their text was designed along the research findings 

of van Hieles development levels of geometric thinking. In particular, O'Daffer & Clemens have made 

the following assertions along the new movement of applying the van Hieles levels throughout the 

text, 
... Each chapter also contains numerous Investigation sections. These activities are developed and 

sequenced according the Van Hiele levels for learning geometry: Level 0 Visualization; Level 1: 

Analysis; Level 2: Informal Deduction; Level 3: Deduction; Level 4: Rigor. The primary emphasis in this 

text is on Levels 0 through 2, which include the following ability goals:  

 

Visualize geometric figures: manipulate (color, cut out, fold and so on) geometric figures. Classify geometric 

figures: Sort figures according to selected attributes, compare and contrast figures; ..., develop and use a 

definition for a figure; describe inclusion relationships for figures.  

 

Analyze geometric figures/relationships: Explain how figures and parts of figures are related; interpret the 

meaning of a geometric situation. 

 

Discover/formulate generalizations: Answer and pose “what if” questions; ...; discover generalizations from 

empirical consideration of examples. 

 

“Proving” and disproving generalizations: Give simple reasons to convince someone that something is true; 

present informal, convincing arguments that something is true (using cut-outs, measurement, 

construction, diagrams, computers, and so on); follow informal arguments that show that something is 

true; show a counterexample for a false generalization (pp. vii-viii). 

 

The text, O'Daffer & Clemens (1992), covers fundamental aspects in geometry throughout ten 

chapters. For example, Chapter 1 covers Geometry in the physical world, Geometry as a 

Mathematical System, Geometry as a Formal Axiomatic Structure, and Aesthetic and Recreational 

Aspects of Geometry together with Pedagogy for Teachers; Chapter 2 focuses at Basic Ideas of 

Geometry while Chapter 3 covers Discovering Polygonal Relationships and Chapter 4 deals with 

Patterns of Polygons through Tessellations …  As a note, I have used this text for several years in a 

geometry course run at the mathematics department, University of Alberta, Canada and found the 

students so excited with the text. 

 
Research Projects on Teaching Geometry 

Children Exploration of shapes through cut and cover: Learning from Rearranging Shape. Medhat H. Rahim, 

Daiyo Sawada and Johnna Strasser’s Project (1996).  

An action research project in the classroom, titled Children Learning from Rearranging Shapes was 

conducted with grade 4 students (Rahim, Sawada, and Strasser, 1996). The following is a brief 

reflection on the project. 

 

Miss Strasser has taken the teaching role for a grade 4 class in the state of Wisconsin, USA. The project 

was designed along van Hieles Levels of geometric thought development and guided by the 

recommendations of the National Council of Teachers of Mathematics (NCTM)  Standards for School 

Mathematics (1989), USA. The NCTM Standards recommend,  

 

In grades K-4, NCTM recommended changes to the content and emphasis of the mathematics being 

taught. Decrease attention to be placed on the rote use of symbols and operations, and increased 

attention placed on number sense, estimation, and reasoning ... Increased attention was to be placed 

on geometry and measurement, extending beyond the naming of geometric figures and converting 

between units of measure. New topics would include the properties of geometric figures and 

relationships between them, developing spatial sense, concepts related to measurement and 



126 | FISER’14 

 

estimation of measure. (Link below), 

http://www.mathcurriculumcenter.org/PDFS/CCM/summaries/standards_summary.pdf 

 

Along these recommendations, the research team has produced a set of simple geometric materials 

intended to assist student exploration of shapes undergoing transformation from one shape (e.g. a 

triangle) into another (say a rectangle). Throughout such transformation processes, a main attribute of 

shape, the area, remains invariant. The materials used consisted of a set of full sized copies of each of 

the 6 shapes shown in Figure 1 and scissors. These shapes were provided, one at a time, to each 

student throughout classroom teaching. Figure 1 below depicts the first sheet, labelled as the 

template, and the other five shapes labelled A to E. The two pieces of the template are to be cut out 

and used by children to construct the other shapes A to E. The horizontal line defining the two pieces 

of the template joins the midpoints of the two sides of the triangle. The teacher prepared overhead 

transparencies of the template and the rest of the shapes for demonstration uses.   

 

 
Figure 1. The six shapes used in the classroom investigative project 

 
The Exploration 
 

The scenario summarized here is reconstructed from several experiences with grade 4 class of 24 

students dealing with shape-to-shape, shape-to-part and part-to-part relationships. In the first 

classroom session, the joyful teacher, Johnna Strasser, has asked the children to assume they are 

‘engineers’ in the ‘land of shapes’ and herself as ‘the chief engineer’. By using the two pieces of the 

template, engineers were instructed by their chief to build each of the five shapes A to E one at a time. 

First, the teacher provided each student with a full size copy of the template then asked each student to 

cut his/her template into its two pieces and label the upper piece 1 and the lower piece 2. The teacher 

performed the cutting and labelling using the transparency while students worked with paper 

handouts at their desks. Also, full size copies for each shape were supplied one at a time as the 

teaching progresses. The students were informed that by sliding, flipping, and/or turning pieces 1 and 

2 they can construct the shape shown on the supplied activity sheet. They were asked to name each of 

their construction products. 

 
Classroom Observations of Students Work 

 

It was an easy task for all students to cut the template along the dissection line into two pieces and 

label them 1 and 2. And, cutting the template into two pieces and building another triangle (triangle 

A) was so simple for the whole class. This exploration provided an introduction practice for the 

students to the nature of the decomposition-composition process by cutting then sliding, flipping 

and/or turning the pieces. All students did correctly name their construction result as a triangle. 

However, for Shape B, the rectangle, two children have some difficulties with constructing the 

rectangle (shape B). Instead they tried to compose and build the shape B on their desk using the 

activity sheet as visual guide rather than attempting to cover it by the two pieces 1 and 2. They came 

up with the shape shown below insisting the shape is a rectangle.  

Template

EDCBA

http://www.mathcurriculumcenter.org/PDFS/CCM/summaries/standards_summary.pdf
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To this end, the teacher interrupted the class to ask for familiar objects that have the shape B. Children 

responded: a door, a book, the blackboard, a window. The two children tried further sliding, turning 

and flipping to get eventually the rectangle. 13 children named the shape as a rectangle and 11 called 

it a square. Interestingly, many children showed doubt that the rectangle could be built. Clearly, this 

is a signal that these children did not have a qualitative experience with shapes. At this point the 

teacher decided to review progress. Manipulating the two transparency pieces, she composed shape 

A (triangle) and B (rectangle) on the overhead projector. She then asked: whether or not the two 

shapes A and B were different in shape; and whether or not they differed in size. While all students 

agreed that the objects had different shapes, they disagreed about whether or not they covered the 

same amount of space. Below is a sample of some children’s answers and reasoning: 

  
No, they are not the same sizes: because they have different number of sides; because they have different lengths of 

sides; because shape A is taller it is larger. 

 

One boy in the class took out his ruler and measured all the sides of shapes A and B, summed up his 

measures for each, and declared that shape A was 6 cm bigger than shape B.  

 

Other children responses: 

 
Yes, they are the same size: because they weigh the same; because they have the same amount; because they could 

hold the same stuff; because they are the same pieces just moved around; because they are the same shape just cut 

in half. 

 

These conflicts concerning the size question made the teacher to clarify that by size it is meant the 

amount of space inside the shape; she stressed that moving a piece around does not change its size. 

Nonetheless, ‘the boy with the ruler’ was not impressed. The uncertainty of the size of a shape being 

invariant under the decomposition-composition process would be due to the lack of spatial 

experience and practice in schools. In this regards, Rahim and Sawada (1990) have suggested earlier 

that shape transforms through cut and cover can provide a qualitative basis for understanding 

geometric relationships among shapes. In their reflection on the early geometry curricula in schools, 

they stated, 

 
In the early grades, there are some ‘play activities’ with the basic polygonal shapes leading to the recognition, 

reproduction, and labelling of squares, triangles, etc. Very little else is done of a qualitative nature. Instead the 

emphasis is very soon on determining and using metric properties of polygons such as perimeter and area (these 

are the ‘measurement’ foci that Wirszup, 1976, refers to), (p. 303).  

 

Evidently, ‘the boy with the ruler’ is a case in point here. He has been left high and dry! He could not 

appreciate nor understand that the processes of sliding, turning or flipping of a shape leave the area 

of the shape unchanged! 
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Research in Proofs and Proving: the case of the Pythagorean Theorem 

 

A close look in the literature would immediately show that Loomis’ text (1968), The Pythagorean 

Proposition, would be a distict resource for the ongoing efforts of proofs and proving applied to the 

Pythagorean Theorem. Loomis’ text presents 370 proofs of the theorem. Loomis have detailed these 

proofs included in his text as follows, 

 
On May 1, 1940 at the revised completion of the manuscript for my 2nd edition of The Pythagorean Proposition, it 

contains - - proofs: Algebraic, 109; Geometric, 255; Quaternionic, 4; Dynamic, 2; in all 370 different proofs, each 

proof calling for its own specific figure. And the end is not yet (p. 269).  

 

The literature further suggest another collection of proofs for the Pythagorean Theorem prepared by 

Bogomolny (1996-2012), known as Bogomolny’s collection compiled and made available through the 

Internet by Bogomolny’s internet link, http://www.cut-the-knot.com/pythagoras/ . This collection 

presents 101 different proofs of the Pythagorean Theorem, some of which were presented earlier in 

Loomis’ text and the rest are presumably new proofs. As the above citation suggests, Loomis’ text 

does not contain a Trigonometric proof for the theorem but Bogomolny’s collection does, namely the 

84th proof, within the 101 proofs he provided. In this regard, Bogomolny states that, 

 
I must admit that, concerning the existence of a trigonometric proof, I have been siding with Elisha Loomis until 

very recently, i.e., until I was informed of Proof #84. Actually, for some people it came as a surprise that anybody 

could doubt the existence of trigonometric proofs, so more of them have eventually found their way to these pages 

(Bogomolny’s internet link http://www.cut-the-knot.com/pythagoras/).  

 

The trigonometric proof of the Pythagorean Theorem was published by Jason Zimba (2009). To view 

Zimba’s proof, just click at the link Proof #84 and follow instructions. 

 
Proof of the Pythagorean Theorem through Construction (Rahim, 2003) 
 

To show that,  

For two squares of m and n units, there can be constructed a third square of x units of length using a 

compass and unmarked straight edge such that m2 + n2 = x2. 

 

Rahim’s (2003) summary: Consider two squares ABCD and EFGH shown below. 

 
Then, three constructions shown in Figure 1 below are required for the proof: (a) 

Construction of rectangle BKJI with area = area of square ABCD with BI = n; (b) 

Construction of rectangle BSQI with area = area of ABCD + area of EFGH; (c) 

Construction of BT = x units as the length for the required third square that would 

satisfy m2 + n2 = x2.    

n

n

m

m

H G

FE

D C

BA

http://www.cut-the-knot.com/pythagoras/
http://www.cut-the-knot.org/pythagoras/index.shtml#84
http://www.cut-the-knot.org/pythagoras/TrigProofs.shtml
http://www.cut-the-knot.com/pythagoras/
http://www.cut-the-knot.org/pythagoras/index.shtml#84
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(a) (b) (c) 

Figure 2*. Constructions: (a) BKJI = square ABCD; (b) BSQI = Square ABCD + Square EFGH, 

(c) BT = x units 
*  (Figure 1 consists of replicas of Rahim’s original figures. The construction steps for the required square of x units that 

satisfies m2 + n2 = x2 have been presented with animations though a power point document available through the Internet 

link http://mrahim.lakeheadu.ca/.) 

 

A brief description for the three constructions:  

(a) Constructing a rectangle with area equals m2. 

As shown in Figure 2(a), the area of rectangle BIJK (or R1) = area of the square ABCD; it is 

easy to follow; thus nw = m2.   

 

(b) Constructing a rectangle with area equals the combined areas of the two squares. 

Since BI = KJ = n units, align the square EFGH along the line segment KJ as shown in Figure 

2b, and the required rectangle BIQS is constructed. 

Thus, area BIQS = rectangle BKJI + square EFGH = nw + n2 = m2 + n2.  

 

(c) Constructing a square with area equals the area of the rectangle BIQS.  

Figure 2c shows that  UTS is a right triangle (drawn in a half circle) of  

diameter = (n + w + n) units and height TB = x units. And, the right  SBT and UBT are 

similar (since corresponding angles are equal), thus corresponding sides are proportional, 

that is, 

TB/UB = SB/TB implies  

(TB)2 = (UB)(SB), then with TB = x units, it follows that 

              x2 = n(w + n) = nw + n2 = m2 + n2. (Rahim, 2003, pp. 146-149). 

 

Note that, (1) it is felt necessary to skim Rahim’s (2003) proof so that the reader would have an 

immediate access to the heart of the proving procedure; (2) the use of similarity of  SBT & UBT was 

NOT used in Rahim’s (2003) original proof. The original proof takes TB as the geometric mean for UB 

and BS within the right  UTS resulting to have TB/ UB = BS/TB etc. 

 
Epilogue 

 

In this article an attempt has been made to introduce a review for research in undergraduate 

geometry of the child geometric thinking development, and methods of teaching geometry together 

with a trace on activities in proofs and proving with reference to Pythagorean Theorem. Additionally, 

piece-wise congruence of area equivalent shapes (or congruence by pieces) through decomposition- 

composition (dissection-motion) operations was introduced and reported particularly as grade 4 

children were observed attempting these shapes transformations in the classroom. In doing so, a 

generalization of the congruence concept to piece-wise congruence was made where the ‘same shape’ 

condition was dropped. The crucial point here is that congruence implies area equivalence but the 

http://mrahim.lakeheadu.ca/
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reverse is not necessarily true whereas piece-wise congruence implies area equivalence and the 

reverse is true too. Eves, (1972) expresses piecewise congruence idea as follows, “The two polygons 

can thus be considered as made up of sets of corresponding pieces which are congruent in pairs but 

perhaps fitted together differently” (p. 194). 
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